与えられた式 $S = -1 - 2 \cdot \frac{2(2^{n-1} - 1)}{2-1} + (2n-1) \cdot 2^n$ を簡略化し、$S = (2n-3) \cdot 2^n + 3$ となることを示す問題です。代数学数式変形等式証明指数法則2025/6/251. 問題の内容与えられた式 S=−1−2⋅2(2n−1−1)2−1+(2n−1)⋅2nS = -1 - 2 \cdot \frac{2(2^{n-1} - 1)}{2-1} + (2n-1) \cdot 2^nS=−1−2⋅2−12(2n−1−1)+(2n−1)⋅2n を簡略化し、S=(2n−3)⋅2n+3S = (2n-3) \cdot 2^n + 3S=(2n−3)⋅2n+3 となることを示す問題です。2. 解き方の手順まず、SSS の式を整理します。S=−1−2⋅2(2n−1−1)2−1+(2n−1)⋅2nS = -1 - 2 \cdot \frac{2(2^{n-1} - 1)}{2-1} + (2n-1) \cdot 2^nS=−1−2⋅2−12(2n−1−1)+(2n−1)⋅2n分母の 2−12-12−1 は 111 なので、S=−1−2⋅2(2n−1−1)+(2n−1)⋅2nS = -1 - 2 \cdot 2(2^{n-1} - 1) + (2n-1) \cdot 2^nS=−1−2⋅2(2n−1−1)+(2n−1)⋅2nS=−1−4(2n−1−1)+(2n−1)⋅2nS = -1 - 4(2^{n-1} - 1) + (2n-1) \cdot 2^nS=−1−4(2n−1−1)+(2n−1)⋅2nS=−1−4⋅2n−1+4+(2n−1)⋅2nS = -1 - 4 \cdot 2^{n-1} + 4 + (2n-1) \cdot 2^nS=−1−4⋅2n−1+4+(2n−1)⋅2nここで、4⋅2n−1=22⋅2n−1=2n−1+2=2n+1=2n⋅24 \cdot 2^{n-1} = 2^2 \cdot 2^{n-1} = 2^{n-1+2} = 2^{n+1} = 2^n \cdot 24⋅2n−1=22⋅2n−1=2n−1+2=2n+1=2n⋅2 です。S=−1−2⋅2n+4+(2n−1)⋅2nS = -1 - 2 \cdot 2^n + 4 + (2n-1) \cdot 2^nS=−1−2⋅2n+4+(2n−1)⋅2nS=3−2⋅2n+(2n−1)⋅2nS = 3 - 2 \cdot 2^n + (2n-1) \cdot 2^nS=3−2⋅2n+(2n−1)⋅2nS=3+(−2+2n−1)⋅2nS = 3 + (-2 + 2n - 1) \cdot 2^nS=3+(−2+2n−1)⋅2nS=3+(2n−3)⋅2nS = 3 + (2n - 3) \cdot 2^nS=3+(2n−3)⋅2nS=(2n−3)⋅2n+3S = (2n-3) \cdot 2^n + 3S=(2n−3)⋅2n+33. 最終的な答えS=(2n−3)⋅2n+3S = (2n-3) \cdot 2^n + 3S=(2n−3)⋅2n+3