$\sin 75^\circ + \sin 120^\circ - \cos 150^\circ + \cos 165^\circ$ の値を求めよ。解析学三角関数三角関数の加法定理三角関数の値2025/6/251. 問題の内容sin75∘+sin120∘−cos150∘+cos165∘\sin 75^\circ + \sin 120^\circ - \cos 150^\circ + \cos 165^\circsin75∘+sin120∘−cos150∘+cos165∘ の値を求めよ。2. 解き方の手順まず、sin75∘\sin 75^\circsin75∘、sin120∘\sin 120^\circsin120∘、cos150∘\cos 150^\circcos150∘、cos165∘\cos 165^\circcos165∘ の値をそれぞれ計算する。sin75∘=sin(45∘+30∘)=sin45∘cos30∘+cos45∘sin30∘=22⋅32+22⋅12=6+24\sin 75^\circ = \sin (45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}sin75∘=sin(45∘+30∘)=sin45∘cos30∘+cos45∘sin30∘=22⋅23+22⋅21=46+2sin120∘=sin(180∘−60∘)=sin60∘=32\sin 120^\circ = \sin (180^\circ - 60^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}sin120∘=sin(180∘−60∘)=sin60∘=23cos150∘=cos(180∘−30∘)=−cos30∘=−32\cos 150^\circ = \cos (180^\circ - 30^\circ) = - \cos 30^\circ = - \frac{\sqrt{3}}{2}cos150∘=cos(180∘−30∘)=−cos30∘=−23cos165∘=cos(180∘−15∘)=−cos15∘=−cos(45∘−30∘)=−(cos45∘cos30∘+sin45∘sin30∘)=−(22⋅32+22⋅12)=−6+24\cos 165^\circ = \cos (180^\circ - 15^\circ) = - \cos 15^\circ = - \cos (45^\circ - 30^\circ) = - (\cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ) = - (\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2}) = - \frac{\sqrt{6} + \sqrt{2}}{4}cos165∘=cos(180∘−15∘)=−cos15∘=−cos(45∘−30∘)=−(cos45∘cos30∘+sin45∘sin30∘)=−(22⋅23+22⋅21)=−46+2したがって、sin75∘+sin120∘−cos150∘+cos165∘=6+24+32−(−32)+(−6+24)=6+24+32+32−6+24=32+32=3\sin 75^\circ + \sin 120^\circ - \cos 150^\circ + \cos 165^\circ = \frac{\sqrt{6} + \sqrt{2}}{4} + \frac{\sqrt{3}}{2} - (-\frac{\sqrt{3}}{2}) + (-\frac{\sqrt{6} + \sqrt{2}}{4}) = \frac{\sqrt{6} + \sqrt{2}}{4} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} - \frac{\sqrt{6} + \sqrt{2}}{4} = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}sin75∘+sin120∘−cos150∘+cos165∘=46+2+23−(−23)+(−46+2)=46+2+23+23−46+2=23+23=33. 最終的な答え3\sqrt{3}3