曲線 $5x^2 + 2xy + y^2 = 16$ で囲まれた部分の面積 $S$ を求めよ。幾何学楕円面積回転積分2025/6/251. 問題の内容曲線 5x2+2xy+y2=165x^2 + 2xy + y^2 = 165x2+2xy+y2=16 で囲まれた部分の面積 SSS を求めよ。2. 解き方の手順まず、与えられた式を回転させることで xyxyxy の項を消去します。回転角を θ\thetaθ とすると、次の変換を行います。x=Xcosθ−Ysinθx = X \cos \theta - Y \sin \thetax=Xcosθ−Ysinθy=Xsinθ+Ycosθy = X \sin \theta + Y \cos \thetay=Xsinθ+Ycosθこれを 5x2+2xy+y2=165x^2 + 2xy + y^2 = 165x2+2xy+y2=16 に代入すると、5(Xcosθ−Ysinθ)2+2(Xcosθ−Ysinθ)(Xsinθ+Ycosθ)+(Xsinθ+Ycosθ)2=165(X \cos \theta - Y \sin \theta)^2 + 2(X \cos \theta - Y \sin \theta)(X \sin \theta + Y \cos \theta) + (X \sin \theta + Y \cos \theta)^2 = 165(Xcosθ−Ysinθ)2+2(Xcosθ−Ysinθ)(Xsinθ+Ycosθ)+(Xsinθ+Ycosθ)2=165(X2cos2θ−2XYcosθsinθ+Y2sin2θ)+2(X2cosθsinθ+XYcos2θ−XYsin2θ−Y2sinθcosθ)+(X2sin2θ+2XYsinθcosθ+Y2cos2θ)=165(X^2 \cos^2 \theta - 2XY \cos \theta \sin \theta + Y^2 \sin^2 \theta) + 2(X^2 \cos \theta \sin \theta + XY \cos^2 \theta - XY \sin^2 \theta - Y^2 \sin \theta \cos \theta) + (X^2 \sin^2 \theta + 2XY \sin \theta \cos \theta + Y^2 \cos^2 \theta) = 165(X2cos2θ−2XYcosθsinθ+Y2sin2θ)+2(X2cosθsinθ+XYcos2θ−XYsin2θ−Y2sinθcosθ)+(X2sin2θ+2XYsinθcosθ+Y2cos2θ)=16(5cos2θ+2cosθsinθ+sin2θ)X2+(−10cosθsinθ+2cos2θ−2sin2θ+2sinθcosθ)XY+(5sin2θ−2sinθcosθ+cos2θ)Y2=16(5 \cos^2 \theta + 2 \cos \theta \sin \theta + \sin^2 \theta) X^2 + (-10 \cos \theta \sin \theta + 2 \cos^2 \theta - 2 \sin^2 \theta + 2 \sin \theta \cos \theta) XY + (5 \sin^2 \theta - 2 \sin \theta \cos \theta + \cos^2 \theta) Y^2 = 16(5cos2θ+2cosθsinθ+sin2θ)X2+(−10cosθsinθ+2cos2θ−2sin2θ+2sinθcosθ)XY+(5sin2θ−2sinθcosθ+cos2θ)Y2=16XYXYXY の項が消えるためには、−10cosθsinθ+2cos2θ−2sin2θ+2sinθcosθ=0-10 \cos \theta \sin \theta + 2 \cos^2 \theta - 2 \sin^2 \theta + 2 \sin \theta \cos \theta = 0−10cosθsinθ+2cos2θ−2sin2θ+2sinθcosθ=0−8cosθsinθ+2(cos2θ−sin2θ)=0-8 \cos \theta \sin \theta + 2(\cos^2 \theta - \sin^2 \theta) = 0−8cosθsinθ+2(cos2θ−sin2θ)=0−4sin(2θ)+2cos(2θ)=0-4 \sin(2 \theta) + 2 \cos(2 \theta) = 0−4sin(2θ)+2cos(2θ)=02cos(2θ)=4sin(2θ)2 \cos(2 \theta) = 4 \sin(2 \theta)2cos(2θ)=4sin(2θ)tan(2θ)=24=12\tan(2 \theta) = \frac{2}{4} = \frac{1}{2}tan(2θ)=42=212θ=arctan122 \theta = \arctan \frac{1}{2}2θ=arctan21 となり、cos(2θ)=25\cos(2 \theta) = \frac{2}{\sqrt{5}}cos(2θ)=52, sin(2θ)=15\sin(2 \theta) = \frac{1}{\sqrt{5}}sin(2θ)=51cos2θ=1+cos(2θ)2=1+252=5+225\cos^2 \theta = \frac{1 + \cos(2 \theta)}{2} = \frac{1 + \frac{2}{\sqrt{5}}}{2} = \frac{\sqrt{5} + 2}{2\sqrt{5}}cos2θ=21+cos(2θ)=21+52=255+2sin2θ=1−cos(2θ)2=1−252=5−225\sin^2 \theta = \frac{1 - \cos(2 \theta)}{2} = \frac{1 - \frac{2}{\sqrt{5}}}{2} = \frac{\sqrt{5} - 2}{2\sqrt{5}}sin2θ=21−cos(2θ)=21−52=255−2cosθsinθ=sin(2θ)2=125\cos \theta \sin \theta = \frac{\sin(2 \theta)}{2} = \frac{1}{2\sqrt{5}}cosθsinθ=2sin(2θ)=251したがって、(5cos2θ+2cosθsinθ+sin2θ)X2+(5sin2θ−2sinθcosθ+cos2θ)Y2=16(5 \cos^2 \theta + 2 \cos \theta \sin \theta + \sin^2 \theta) X^2 + (5 \sin^2 \theta - 2 \sin \theta \cos \theta + \cos^2 \theta) Y^2 = 16(5cos2θ+2cosθsinθ+sin2θ)X2+(5sin2θ−2sinθcosθ+cos2θ)Y2=16(55+225+2125+5−225)X2+(55−225−2125+5+225)Y2=16(5 \frac{\sqrt{5}+2}{2\sqrt{5}} + 2 \frac{1}{2\sqrt{5}} + \frac{\sqrt{5}-2}{2\sqrt{5}}) X^2 + (5 \frac{\sqrt{5}-2}{2\sqrt{5}} - 2 \frac{1}{2\sqrt{5}} + \frac{\sqrt{5}+2}{2\sqrt{5}}) Y^2 = 16(5255+2+2251+255−2)X2+(5255−2−2251+255+2)Y2=16(55+10+2+5−225)X2+(55−10−2+5+225)Y2=16(\frac{5\sqrt{5}+10+2+\sqrt{5}-2}{2\sqrt{5}}) X^2 + (\frac{5\sqrt{5}-10-2+\sqrt{5}+2}{2\sqrt{5}}) Y^2 = 16(2555+10+2+5−2)X2+(2555−10−2+5+2)Y2=1665+1025X2+65−1025Y2=16\frac{6\sqrt{5}+10}{2\sqrt{5}} X^2 + \frac{6\sqrt{5}-10}{2\sqrt{5}} Y^2 = 162565+10X2+2565−10Y2=16(35+55)X2+(35−55)Y2=16(\frac{3\sqrt{5}+5}{\sqrt{5}}) X^2 + (\frac{3\sqrt{5}-5}{\sqrt{5}}) Y^2 = 16(535+5)X2+(535−5)Y2=16(3+5)X2+(3−5)Y2=16(3 + \sqrt{5}) X^2 + (3 - \sqrt{5}) Y^2 = 16(3+5)X2+(3−5)Y2=16X2163+5+Y2163−5=1\frac{X^2}{\frac{16}{3+\sqrt{5}}} + \frac{Y^2}{\frac{16}{3-\sqrt{5}}} = 13+516X2+3−516Y2=1X216(3−5)4+Y216(3+5)4=1\frac{X^2}{\frac{16(3-\sqrt{5})}{4}} + \frac{Y^2}{\frac{16(3+\sqrt{5})}{4}} = 1416(3−5)X2+416(3+5)Y2=1X24(3−5)+Y24(3+5)=1\frac{X^2}{4(3-\sqrt{5})} + \frac{Y^2}{4(3+\sqrt{5})} = 14(3−5)X2+4(3+5)Y2=1これは楕円の式であり、a2=4(3−5)a^2 = 4(3 - \sqrt{5})a2=4(3−5) と b2=4(3+5)b^2 = 4(3 + \sqrt{5})b2=4(3+5) である。a=23−5a = 2 \sqrt{3 - \sqrt{5}}a=23−5 と b=23+5b = 2 \sqrt{3 + \sqrt{5}}b=23+5楕円の面積は πab\pi abπab で与えられる。S=π⋅23−5⋅23+5=4π9−5=4π4=4π⋅2=8πS = \pi \cdot 2 \sqrt{3-\sqrt{5}} \cdot 2 \sqrt{3+\sqrt{5}} = 4 \pi \sqrt{9-5} = 4 \pi \sqrt{4} = 4 \pi \cdot 2 = 8 \piS=π⋅23−5⋅23+5=4π9−5=4π4=4π⋅2=8π3. 最終的な答え8π8\pi8π