木の根元から50m離れた地点から木の先端を見上げたところ、見上げ角が18°であった。目の高さが1.5mのとき、木の高さは何mか求める問題です。答えは小数第1位まで求めます。

幾何学三角比tan高さ角度
2025/6/26

1. 問題の内容

木の根元から50m離れた地点から木の先端を見上げたところ、見上げ角が18°であった。目の高さが1.5mのとき、木の高さは何mか求める問題です。答えは小数第1位まで求めます。

2. 解き方の手順

まず、目の高さから上の木の高さhhを求めます。木の根元から見ている地点までの距離をdd、見上げ角をθ\thetaとすると、
tanθ=hd\tan \theta = \frac{h}{d}
が成り立ちます。したがって、hhは以下の式で求められます。
h=dtanθh = d \tan \theta
問題文より、d=50d = 50m, θ=18\theta = 18^\circなので、
h=50tan18h = 50 \tan 18^\circ
tan180.3249\tan 18^\circ \approx 0.3249なので、
h=50×0.3249=16.245h = 50 \times 0.3249 = 16.245 m
したがって、木の高さHHは、目の高さ1.5mを足して、
H=h+1.5=16.245+1.5=17.745H = h + 1.5 = 16.245 + 1.5 = 17.745 m
小数第1位まで求めると17.7mになります。

3. 最終的な答え

17.7 m

「幾何学」の関連問題

$\angle A = 30^\circ$, $\angle B = 90^\circ$, $BC = 1$である$\triangle ABC$において、辺$AB$上に$BD = 1$となるような点$...

三角形角度辺の長さ三角比正弦
2025/6/26

2直線 $y = -2x + 7$ と $y = x - 5$ がある。$y$ 軸とそれぞれの直線との交点を A, B とし、2直線の交点を C とする。点 C を通り、三角形 ABC の面積を2等分...

座標平面直線交点三角形の面積中点直線の式
2025/6/26

問題1は、半径が3、弧の長さが4である扇形の中心角の大きさをラジアンで求め、面積を求める問題です。 問題2は、$\sin\theta + \cos\theta = \frac{2}{3}$ のとき、$...

扇形弧の長さ面積三角関数sincos三角関数の恒等式
2025/6/26

問題1:半径が3、弧の長さが4の扇形がある。 (1) 中心角の大きさは何ラジアンか。 (2) 面積を求めよ。 問題2:$\sin \theta + \cos \theta = \frac{2}{3}$...

扇形弧の長さ面積三角関数sincos三角関数の相互関係
2025/6/26

問題1は、半径が3、弧の長さが4の扇形について、中心角の大きさをラジアンで求め、面積を求める問題です。 問題2は、$sinθ + cosθ = \frac{2}{3}$ のとき、$sinθcosθ$ ...

扇形弧の長さ面積三角関数sincos加法定理
2025/6/26

問題は2つの大問からなります。 大問1は、半径が3、弧の長さが4の扇形について、(1)中心角の大きさをラジアンで求め、(2)面積を求める問題です。 大問2は、$\sin\theta + \cos\th...

扇形弧の長さ面積三角関数加法定理
2025/6/26

問題1:半径が3、弧の長さが4の扇形がある。 (1) 中心角の大きさは何ラジアンか。 (2) 面積を求めよ。 問題2:$\sin \theta + \cos \theta = \frac{2}{3}$...

扇形弧の長さ面積三角関数sincos
2025/6/26

問題1は半径3、弧の長さ4の扇形について、(1)中心角の大きさを求め、(2)面積を求める問題です。 問題2は $\sin{\theta} + \cos{\theta} = \frac{2}{3}$ の...

扇形弧の長さ面積三角関数三角比の相互関係
2025/6/26

問題1は半径が3、弧の長さが4の扇形に関する問題です。 (1)中心角の大きさを求めます。 (2)面積を求めます。 問題2は$\sin\theta + \cos\theta = \frac{2}{3}$...

扇形中心角面積三角関数sincos三角関数の恒等式
2025/6/26

問題1:半径が3、弧の長さが4の扇形がある。 (1) 中心角の大きさはいくらか。 (2) 面積を求めよ。 問題2:$\sin \theta + \cos \theta = \frac{2}{3}$ の...

扇形中心角面積三角関数
2025/6/26