与えられた式の分母を有理化せよ。与えられた式は $\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}$ である。代数学式の計算有理化根号2025/6/26以下に問題65の(2)の解答を示します。1. 問題の内容与えられた式の分母を有理化せよ。与えられた式は1−2+31+2+3\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}1+2+31−2+3である。2. 解き方の手順まず、分母と分子に 1+3−21+\sqrt{3} - \sqrt{2}1+3−2 を掛ける。1−2+31+2+3=(1+3)−2(1+3)+2\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}} = \frac{(1+\sqrt{3})-\sqrt{2}}{(1+\sqrt{3})+\sqrt{2}}1+2+31−2+3=(1+3)+2(1+3)−2(1+3−2)(1+3−2)(1+3+2)(1+3−2)=(1+3−2)2(1+3)2−(2)2\frac{(1+\sqrt{3}-\sqrt{2})(1+\sqrt{3}-\sqrt{2})}{(1+\sqrt{3}+\sqrt{2})(1+\sqrt{3}-\sqrt{2})} = \frac{(1+\sqrt{3}-\sqrt{2})^2}{(1+\sqrt{3})^2 - (\sqrt{2})^2} (1+3+2)(1+3−2)(1+3−2)(1+3−2)=(1+3)2−(2)2(1+3−2)2(1+3)2−(2)2=1+23+3−2=2+23(1+\sqrt{3})^2 - (\sqrt{2})^2 = 1 + 2\sqrt{3} + 3 - 2 = 2 + 2\sqrt{3}(1+3)2−(2)2=1+23+3−2=2+23(1+3−2)2=(1+3)2−22(1+3)+(2)2=1+23+3−22−26+2=6+23−22−26(1+\sqrt{3}-\sqrt{2})^2 = (1+\sqrt{3})^2 - 2\sqrt{2}(1+\sqrt{3}) + (\sqrt{2})^2 = 1+2\sqrt{3}+3 -2\sqrt{2} -2\sqrt{6} + 2 = 6+2\sqrt{3}-2\sqrt{2}-2\sqrt{6}(1+3−2)2=(1+3)2−22(1+3)+(2)2=1+23+3−22−26+2=6+23−22−266+23−22−262+23=3+3−2−61+3\frac{6+2\sqrt{3}-2\sqrt{2}-2\sqrt{6}}{2+2\sqrt{3}} = \frac{3+\sqrt{3}-\sqrt{2}-\sqrt{6}}{1+\sqrt{3}}2+236+23−22−26=1+33+3−2−6分母と分子に1−31-\sqrt{3}1−3を掛ける(3+3−2−6)(1−3)(1+3)(1−3)=3+3−2−6−33−3+6+231−3\frac{(3+\sqrt{3}-\sqrt{2}-\sqrt{6})(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})} = \frac{3+\sqrt{3}-\sqrt{2}-\sqrt{6}-3\sqrt{3}-3+\sqrt{6}+\sqrt{2}\sqrt{3}}{1-3} (1+3)(1−3)(3+3−2−6)(1−3)=1−33+3−2−6−33−3+6+23=3+3−2−6−33−3+6+6−2=−23−2+6−2=23+2−62= \frac{3+\sqrt{3}-\sqrt{2}-\sqrt{6}-3\sqrt{3}-3+\sqrt{6}+\sqrt{6}}{-2} = \frac{-2\sqrt{3}-\sqrt{2}+\sqrt{6}}{-2} = \frac{2\sqrt{3}+\sqrt{2}-\sqrt{6}}{2}=−23+3−2−6−33−3+6+6=−2−23−2+6=223+2−63. 最終的な答え23+2−62\frac{2\sqrt{3}+\sqrt{2}-\sqrt{6}}{2}223+2−6