与えられた4つの点A, B, C, Dがそれぞれどの象限にあるかを答えます。点の座標はそれぞれA(2, 3), B(2, -3), C(-2, 3), D(-2, -3)です。

幾何学座標平面象限座標
2025/6/26

1. 問題の内容

与えられた4つの点A, B, C, Dがそれぞれどの象限にあるかを答えます。点の座標はそれぞれA(2, 3), B(2, -3), C(-2, 3), D(-2, -3)です。

2. 解き方の手順

象限は座標平面を4つの領域に分けたものです。各象限におけるx座標とy座標の符号は以下のようになります。
* 第1象限: x > 0, y > 0
* 第2象限: x < 0, y > 0
* 第3象限: x < 0, y < 0
* 第4象限: x > 0, y < 0
与えられた各点について、x座標とy座標の符号を調べ、どの象限に属するか判定します。
(1) A(2, 3): x座標は2で正、y座標は3で正なので、第1象限にあります。
(2) B(2, -3): x座標は2で正、y座標は-3で負なので、第4象限にあります。
(3) C(-2, 3): x座標は-2で負、y座標は3で正なので、第2象限にあります。
(4) D(-2, -3): x座標は-2で負、y座標は-3で負なので、第3象限にあります。

3. 最終的な答え

(1) A(2, 3): 第1象限
(2) B(2, -3): 第4象限
(3) C(-2, 3): 第2象限
(4) D(-2, -3): 第3象限

「幾何学」の関連問題

四面体ABCDにおいて、辺AB, BC, CD, DAの中点をそれぞれP, Q, R, Sとする。このとき、四角形PQRSが平行四辺形であることを証明する問題です。

ベクトル四面体平行四辺形中点
2025/6/26

直角三角形 $ABC$ の内接円と各辺との接点をそれぞれ $P, Q, R$ とする。$∠A = 90^\circ$, $BP = 6$, $PC = 4$ であるとき、以下の問いに答える。 (1) ...

直角三角形内接円接線三平方の定理
2025/6/26

(1)と(2)の図において、角度$\alpha$を求める問題です。(1)では、線分ABは円の直径であることが与えられています。

角度円周角の定理三角形四角形
2025/6/26

三角形ABCがあり、AB=4, BC=5, CA=3である。三角形ABCの内心をIとする。直線AIと辺BCの交点をDとするとき、以下のものを求める。 (1) 線分BDの長さ (2) AI : ID

三角形内心角の二等分線の定理線分の比
2025/6/26

(1) 次の円と直線の共有点の座標を求めます。 (ア) 円 $x^2 + y^2 = 25$ と直線 $y = 2x - 5$ (イ) 円 $x^2 + y^2 = 4$ と直線 $x + y = 2...

直線共有点二次方程式判別式
2025/6/26

三角形OABにおいて、辺OAを3:2に内分する点をC、辺OBを1:2に内分する点をDとする。線分ADと線分BCの交点をPとする。ベクトルOA = a, ベクトルOB = b とするとき、ベクトルOPを...

ベクトル内分線分の交点ベクトル方程式
2025/6/26

(1) 円 $x^2 + y^2 - 10x + 12y = 3$ の中心の座標と半径を求める。 (2) 方程式 $x^2 + y^2 + 2kx - 4ky + 4k^2 + 6 = 0$ が円を表...

座標半径平方完成不等式
2025/6/26

2直線 $2x+y-3=0$ と $3x-2y+2=0$ の交点と原点を通る直線の方程式を求める問題です。

直線交点方程式
2025/6/26

3点A(1, 1), B(3, 7), C(-3, -1)を頂点とする三角形ABCの面積を求めます。

三角形面積ベクトル外積
2025/6/26

直線 $l: 2x + 3y - 5 = 0$ に関して、点 $A(3, 4)$ と対称な点 $B$ の座標を求めます。

座標平面対称点直線点と直線の距離
2025/6/26