3点A(1, 1), B(3, 7), C(-3, -1)を頂点とする三角形ABCの面積を求めます。

幾何学三角形面積ベクトル外積
2025/6/26

1. 問題の内容

3点A(1, 1), B(3, 7), C(-3, -1)を頂点とする三角形ABCの面積を求めます。

2. 解き方の手順

三角形の面積は、ベクトルの外積を用いることで計算できます。
ベクトルABとベクトルACを求めます。
AB=(31,71)=(2,6)\overrightarrow{AB} = (3-1, 7-1) = (2, 6)
AC=(31,11)=(4,2)\overrightarrow{AC} = (-3-1, -1-1) = (-4, -2)
三角形ABCの面積Sは、
S=12AB×AC=12(2×2)(6×4)=124+24=1220=10S = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} |(2 \times -2) - (6 \times -4)| = \frac{1}{2} |-4 + 24| = \frac{1}{2} |20| = 10
したがって、三角形ABCの面積は10です。

3. 最終的な答え

10

「幾何学」の関連問題

$\triangle OAB$ に対して、$\overrightarrow{OP} = s\overrightarrow{OA} + t\overrightarrow{OB}$ ($s, t$ は実数...

ベクトル点の存在範囲線形結合平行四辺形
2025/6/27

各辺の長さが2である正四面体OABCにおいて、辺OA上に点P、辺BC上に点Qをとる。$\vec{OA} = \vec{a}$, $\vec{OB} = \vec{b}$, $\vec{OC} = \v...

ベクトル空間図形正四面体内積最小値面積
2025/6/27

空間ベクトル $\vec{a}$, $\vec{b}$, $\vec{c}$ が与えられたとき、以下の4つの等式が常に成り立つかどうかを判定し、成り立つ場合は〇、そうでない場合は×を選択する問題です。...

ベクトルベクトル三重積スカラー三重積空間ベクトル
2025/6/27

空間ベクトル $\vec{a}, \vec{b}, \vec{c}$ が与えられたとき、以下の等式が成り立つかどうかを判定します。 (1) $(\vec{a} \times \vec{b}) \cdo...

ベクトル空間ベクトル内積外積スカラー三重積ベクトル三重積
2025/6/27

次の不等式が表す領域を下図に示し、下線部に適語を入れよ。 (1) $y \geqq -2x + 3$ (2) $(x-4)^2 + y^2 < 4$

不等式領域グラフ直線
2025/6/27

問題6では、与えられた円と直線の共有点の個数を求めます。問題は2つあります。 (1) 円 $x^2 + y^2 = 8$ と直線 $y = x + 4$ (2) 円 $x^2 + y^2 = 4$ と...

直線共有点判別式連立方程式
2025/6/27

円 $x^2 + y^2 = 3$ と直線 $y = x + 3$ の交点を求めよ。

直線交点二次方程式複素数
2025/6/27

円 $(x+6)^2 + (y-2)^2 = 18$ と直線 $y = x+2$ の共有点の座標を求めます。

直線共有点連立方程式
2025/6/27

円と直線の共有点の個数を求める問題です。具体的には、以下の2つの問題があります。 (1) 円 $x^2 + y^2 = 8$ と直線 $y = x + 4$ の共有点の個数を求めます。 (2) 円 $...

直線共有点判別式二次方程式
2025/6/27

2点A(2, 1)とB(-3, 2)が与えられている。 (1) y軸上にあり、A, Bから等距離にある点Pの座標を求める。 (2) x軸上にあり、A, Bから等距離にある点Qの座標を求める。

座標平面距離代数
2025/6/27