問題は、$(2 + 5\sqrt{2})(1 + 2\sqrt{2})$ を計算することです。

代数学平方根式の展開計算
2025/6/26

1. 問題の内容

問題は、(2+52)(1+22)(2 + 5\sqrt{2})(1 + 2\sqrt{2}) を計算することです。

2. 解き方の手順

この式を展開し、整理します。
分配法則を用いて、各項を掛け合わせます。
(2+52)(1+22)=2(1)+2(22)+52(1)+52(22)(2 + 5\sqrt{2})(1 + 2\sqrt{2}) = 2(1) + 2(2\sqrt{2}) + 5\sqrt{2}(1) + 5\sqrt{2}(2\sqrt{2})
=2+42+52+10(2)2= 2 + 4\sqrt{2} + 5\sqrt{2} + 10(\sqrt{2})^2
=2+92+10(2)= 2 + 9\sqrt{2} + 10(2)
=2+92+20= 2 + 9\sqrt{2} + 20
=22+92= 22 + 9\sqrt{2}

3. 最終的な答え

22+9222 + 9\sqrt{2}

「代数学」の関連問題

与えられた式 $(\sin \theta + \cos \theta)^2 + (\sin \theta - \cos \theta)^2$ を簡略化します。

三角関数恒等式式の展開簡略化
2025/6/26

グラフは日本企業の海外への研究費支出額を示しています。1989年度の支出額は1978年度の10倍であり、1978年度と1989年度の支出額の合計が485.1億円であるとき、1978年度の研究費支出額を...

方程式文章問題割合
2025/6/26

$x > 0$, $y > 0$のとき、$\frac{xy}{x^2 + 4y^2}$ の最大値を求め、そのときの $x$ を $y$ で表す。

最大値分数式微分変数変換
2025/6/26

2次関数 $y = 2x^2$ のグラフを、以下の (1)~(4) のように移動させたときの放物線の方程式を求める問題です。 (1) $x$ 軸方向に 2 だけ平行移動 (2) $y$ 軸方向に -2...

二次関数平行移動対称移動グラフ
2025/6/26

与えられた数列 $\{a_n\}$ と $\{b_n\}$ に関する問題を解きます。 (1) 数列 $\{a_n\}$ の一般項 $a_n$ を $n$ で表します。ただし、$\{a_n\}$ は公差...

数列等差数列等比数列数列の和剰余
2025/6/26

次の4つの2次関数のグラフを描け。 (1) $y = x^2 - 1$ (2) $y = (x-1)^2$ (3) $y = (x-3)^2 + 2$ (4) $y = (x+1)^2 - 1$

二次関数グラフ放物線平行移動
2025/6/26

与えられた4つの2次不等式をそれぞれ解く問題です。 (1) $(x-1)(x-2) > 0$ (2) $(x-1)(x+2) \ge 0$ (3) $(x+2)(x-5) < 0$ (4) $(x+3...

二次不等式不等式数直線
2025/6/26

与えられた3つの2次方程式の実数解の個数をそれぞれ求めます。 (1) $x^2 + 4x - 1 = 0$ (2) $x^2 - 6x + 9 = 0$ (3) $2x^2 - 3x + 4 = 0$

二次方程式判別式実数解
2025/6/26

次の2つの2次方程式について、指定された条件を満たすような定数 $k$ の範囲を求め、(2)については重解も求めます。 (1) $x^2 + 3x + (k - 1) = 0$ が異なる2つの実数解を...

二次方程式判別式解の範囲重解
2025/6/26

与えられた3つの2次方程式について、実数解の個数を求める問題です。 (1) $x^2 + 4x - 1 = 0$ (2) $x^2 - 6x + 9 = 0$ (3) $2x^2 - 3x + 4 =...

二次方程式判別式実数解
2025/6/26