与えられた式 $\frac{\sqrt{24}}{3} - \frac{2}{\sqrt{6}}$ を計算し、簡略化してください。

算数平方根有理化根号の計算式の簡略化
2025/6/26

1. 問題の内容

与えられた式 24326\frac{\sqrt{24}}{3} - \frac{2}{\sqrt{6}} を計算し、簡略化してください。

2. 解き方の手順

まず、24\sqrt{24} を簡略化します。
24=4×624 = 4 \times 6 なので、24=4×6=4×6=26\sqrt{24} = \sqrt{4 \times 6} = \sqrt{4} \times \sqrt{6} = 2\sqrt{6} となります。
したがって、
243=263\frac{\sqrt{24}}{3} = \frac{2\sqrt{6}}{3} となります。
次に、26\frac{2}{\sqrt{6}} を有理化します。
26=26×66=266=63\frac{2}{\sqrt{6}} = \frac{2}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} = \frac{2\sqrt{6}}{6} = \frac{\sqrt{6}}{3} となります。
したがって、
24326=26363\frac{\sqrt{24}}{3} - \frac{2}{\sqrt{6}} = \frac{2\sqrt{6}}{3} - \frac{\sqrt{6}}{3} となります。
最後に、共通の分母で式をまとめます。
26363=2663=63\frac{2\sqrt{6}}{3} - \frac{\sqrt{6}}{3} = \frac{2\sqrt{6} - \sqrt{6}}{3} = \frac{\sqrt{6}}{3} となります。

3. 最終的な答え

63\frac{\sqrt{6}}{3}

「算数」の関連問題

5個の数字 0, 1, 2, 3, 4 のうち異なる4個を並べて4桁の整数を作るとき、次の整数は何個作れるか。 (1) 4桁の整数 (2) 4桁の奇数 (3) 4桁の偶数

順列組み合わせ場合の数整数
2025/6/27

自然数 $n$ に関する次の2つの命題の否定をそれぞれ求めます。 (1) $n$ は偶数である。 (2) $n$ は5より小さい。

命題否定自然数論理
2025/6/27

4桁の自然数 $n$ の千の位、百の位、十の位、一の位の数字をそれぞれ $a, b, c, d$ とします。次の各条件を満たす $n$ は何個あるかを求めます。 (1) $a > b > c > d$...

組み合わせ整数桁数
2025/6/26

次の3つの計算問題を解きます。 (1) $\sqrt{3} \times \sqrt{15}$ (2) $5\sqrt{2} \times 2\sqrt{7}$ (3) $\sqrt{6} \time...

平方根計算
2025/6/26

問題5:1分間で93枚印刷できる印刷機で40秒間印刷した場合、印刷されたポスターの枚数を求める。 問題6:与えられた数の逆数を求める。 問題7:計算のきまりを利用して、空欄にあてはまる数を求める。

割合分数逆数計算のきまり分配法則
2025/6/26

与えられた3つの平方根の式 $\sqrt{18}$, $\sqrt{20}$, $\sqrt{32}$ を、ルートの中身ができるだけ小さい整数になるように変形せよ。

平方根ルートの計算素因数分解数の変形
2025/6/26

$\frac{\sqrt{35}}{\sqrt{7}}$ を計算する問題です。

平方根計算
2025/6/26

$\frac{\sqrt{18}}{\sqrt{6}}$を計算する問題です。

平方根計算
2025/6/26

$\sqrt{2} \times \sqrt{7}$ を計算してください。

平方根計算
2025/6/26

次の数を小さい順に並べなさい。 $\frac{2}{5}, \frac{\sqrt{2}}{5}, \frac{2}{\sqrt{5}}, \sqrt{0.25}$

数の比較平方根有理化大小関係
2025/6/26