次の式を計算します。 $3x^2 \times (-5x^3y)^2$

代数学式の計算累乗単項式多項式
2025/6/26

1. 問題の内容

次の式を計算します。
3x2×(5x3y)23x^2 \times (-5x^3y)^2

2. 解き方の手順

まず、括弧の中の累乗を計算します。
(5x3y)2=(5)2×(x3)2×y2=25x6y2(-5x^3y)^2 = (-5)^2 \times (x^3)^2 \times y^2 = 25x^6y^2
次に、元の式に代入します。
3x2×25x6y23x^2 \times 25x^6y^2
係数をかけます。
3×25=753 \times 25 = 75
次に、xxの累乗を計算します。
x2×x6=x2+6=x8x^2 \times x^6 = x^{2+6} = x^8
最後に、式をまとめます。
75x8y275x^8y^2

3. 最終的な答え

75x8y275x^8y^2

「代数学」の関連問題

$n \ge 4$ に対して、$n$次正方行列の行列式($n$次行列式)がどうなるか考える。$n=4$の場合の展開式を書き、項数を求める。

行列式線形代数行列展開式
2025/6/27

問題は、ある表面から得られた3次の行列式について、以下の点を考察・議論することを求めています。 * 行列式の式の形、多重線形性、交代性、退化性 * 転置行列との関係 * $a_...

行列式線形代数多重線形性交代性転置行列多項式
2025/6/27

(1) 複素数 $z$ が $z + \frac{16}{z}$ が実数となるように動くとき、$z$ が描く図形を複素数平面上に図示する。ただし、$z \neq 0$ とする。 (2) (1)の条件に...

複素数複素数平面図形実数
2025/6/27

(1) 複素数 $z + \frac{16}{z}$ が実数となるような、0でない複素数 $z$ が複素数平面上に描く図形を求め、図示する。 (2) (1)の条件に加えて、$2 \le z + \fr...

複素数複素数平面絶対値三角関数
2025/6/27

(1) 複素数 $z + \frac{16}{z}$ が実数となるような、0でない複素数 $z$ が描く図形を複素数平面上に図示する。 (2) (1)の条件に加えて、$2 \leq z + \frac...

複素数複素数平面図形実数
2025/6/27

(1) 複素数 $z$ が $z + \frac{16}{z}$ が実数となるような0でない複素数 $z$ が描く図形を複素数平面上に図示せよ。 (2) (1)の条件に加えて、$2 \le z + \...

複素数複素数平面絶対値
2025/6/27

(1) 複素数 $z$ が $z + \frac{16}{z}$ が実数となるような $0$ でない $z$ の軌跡を複素数平面上に図示せよ。 (2) (1)の条件に加えて、$2 \le z + \f...

複素数複素数平面軌跡絶対値偏角
2025/6/27

与えられた画像には2つの問題が含まれています。 * **問題2:** 3次行列式の展開式が与えられています。この式を観察し、式の形、多重線形性、交代性、転置との関係、各成分の多項式としての性質など...

行列式行列線形代数置換展開
2025/6/27

3次正方行列 $A = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$ に対し...

線形代数行列式多重線形性交代性
2025/6/27

与えられた条件を満たす2次関数を求める問題です。4つの小問があり、それぞれ頂点と通る点、または軸と通る点が与えられています。

二次関数2次関数頂点方程式連立方程式
2025/6/27