a) $f(x, y) = x^2 y^3$ b) $f(x, y) = x^2 + y^2$ c) $f(x, y) = e^{x^2 + y^2}$ d) $f(x, y) = \ln(x^3 + y^3)$ e) $f(x, y) = (2x + 3y)(x^3 + y^3)$ f) $f(x, y) = \frac{4xy}{x^2 + y^2}$

解析学偏微分偏導関数
2025/6/27
はい、承知いたしました。画像の問題について、指示された形式で解答します。
**

1. 問題の内容**

1. 以下の関数 $f(x, y)$ について、1階の偏導関数 $\frac{\partial f}{\partial x}$ と $\frac{\partial f}{\partial y}$ を求め、それぞれについて点 $(1, 2)$ における偏微分係数を求めよ。ただし、偏微分不可能な場合は「×」と答えよ。

a) f(x,y)=x2y3f(x, y) = x^2 y^3
b) f(x,y)=x2+y2f(x, y) = x^2 + y^2
c) f(x,y)=ex2+y2f(x, y) = e^{x^2 + y^2}
d) f(x,y)=ln(x3+y3)f(x, y) = \ln(x^3 + y^3)
e) f(x,y)=(2x+3y)(x3+y3)f(x, y) = (2x + 3y)(x^3 + y^3)
f) f(x,y)=4xyx2+y2f(x, y) = \frac{4xy}{x^2 + y^2}

2. 以下の関数 $f(x, y)$ について、2階の偏導関数 $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$ をすべて求めよ。

a) f(x,y)=x2+3xy+y2f(x, y) = x^2 + 3xy + y^2
b) f(x,y)=x2+2y2f(x, y) = \sqrt{x^2 + 2y^2}
c) f(x,y)=ln(2x+y)f(x, y) = \ln(2x + y)
d) f(x,y)=2xex2+y2f(x, y) = 2xe^{x^2 + y^2}
**

2. 解き方の手順**

1. 偏導関数を求める:それぞれの関数 $f(x, y)$ に対して、変数 $x$ と $y$ について偏微分を行い、$\frac{\partial f}{\partial x}$ と $\frac{\partial f}{\partial y}$ を求めます。偏微分のルール(積の微分、合成関数の微分など)を適切に適用します。

2. 偏微分係数を求める:求めた偏導関数 $\frac{\partial f}{\partial x}$ と $\frac{\partial f}{\partial y}$ に、指定された点 $(1, 2)$ の $x$ 座標と $y$ 座標の値を代入します。これにより、点 $(1, 2)$ における偏微分係数が得られます。偏導関数が定義できない場合は「×」と答えます。

3. 2階の偏導関数を求める: それぞれの関数 $f(x,y)$ に対して、$\frac{\partial^2 f}{\partial x^2}$は$\frac{\partial f}{\partial x}$を$x$で偏微分、$\frac{\partial^2 f}{\partial y^2}$は$\frac{\partial f}{\partial y}$を$y$で偏微分、$\frac{\partial^2 f}{\partial x \partial y}$は$\frac{\partial f}{\partial y}$を$x$で偏微分、$\frac{\partial^2 f}{\partial y \partial x}$は$\frac{\partial f}{\partial x}$を$y$で偏微分することで求めます。

**

3. 最終的な答え**

1. a) $f(x, y) = x^2 y^3$

* fx=2xy3\frac{\partial f}{\partial x} = 2xy^3. fx(1,2)=2(1)(23)=16\frac{\partial f}{\partial x}(1, 2) = 2(1)(2^3) = 16
* fy=3x2y2\frac{\partial f}{\partial y} = 3x^2y^2. fy(1,2)=3(12)(22)=12\frac{\partial f}{\partial y}(1, 2) = 3(1^2)(2^2) = 12
b) f(x,y)=x2+y2f(x, y) = x^2 + y^2
* fx=2x\frac{\partial f}{\partial x} = 2x. fx(1,2)=2(1)=2\frac{\partial f}{\partial x}(1, 2) = 2(1) = 2
* fy=2y\frac{\partial f}{\partial y} = 2y. fy(1,2)=2(2)=4\frac{\partial f}{\partial y}(1, 2) = 2(2) = 4
c) f(x,y)=ex2+y2f(x, y) = e^{x^2 + y^2}
* fx=2xex2+y2\frac{\partial f}{\partial x} = 2xe^{x^2 + y^2}. fx(1,2)=2(1)e12+22=2e5\frac{\partial f}{\partial x}(1, 2) = 2(1)e^{1^2 + 2^2} = 2e^5
* fy=2yex2+y2\frac{\partial f}{\partial y} = 2ye^{x^2 + y^2}. fy(1,2)=2(2)e12+22=4e5\frac{\partial f}{\partial y}(1, 2) = 2(2)e^{1^2 + 2^2} = 4e^5
d) f(x,y)=ln(x3+y3)f(x, y) = \ln(x^3 + y^3)
* fx=3x2x3+y3\frac{\partial f}{\partial x} = \frac{3x^2}{x^3 + y^3}. fx(1,2)=3(12)13+23=39=13\frac{\partial f}{\partial x}(1, 2) = \frac{3(1^2)}{1^3 + 2^3} = \frac{3}{9} = \frac{1}{3}
* fy=3y2x3+y3\frac{\partial f}{\partial y} = \frac{3y^2}{x^3 + y^3}. fy(1,2)=3(22)13+23=129=43\frac{\partial f}{\partial y}(1, 2) = \frac{3(2^2)}{1^3 + 2^3} = \frac{12}{9} = \frac{4}{3}
e) f(x,y)=(2x+3y)(x3+y3)f(x, y) = (2x + 3y)(x^3 + y^3)
* fx=2(x3+y3)+(2x+3y)(3x2)\frac{\partial f}{\partial x} = 2(x^3 + y^3) + (2x + 3y)(3x^2). fx(1,2)=2(13+23)+(2(1)+3(2))(3(12))=2(9)+(8)(3)=18+24=42\frac{\partial f}{\partial x}(1, 2) = 2(1^3 + 2^3) + (2(1) + 3(2))(3(1^2)) = 2(9) + (8)(3) = 18 + 24 = 42
* fy=3(x3+y3)+(2x+3y)(3y2)\frac{\partial f}{\partial y} = 3(x^3 + y^3) + (2x + 3y)(3y^2). fy(1,2)=3(13+23)+(2(1)+3(2))(3(22))=3(9)+(8)(12)=27+96=123\frac{\partial f}{\partial y}(1, 2) = 3(1^3 + 2^3) + (2(1) + 3(2))(3(2^2)) = 3(9) + (8)(12) = 27 + 96 = 123
f) f(x,y)=4xyx2+y2f(x, y) = \frac{4xy}{x^2 + y^2}
* fx=4y(x2+y2)4xy(2x)(x2+y2)2=4y34x2y(x2+y2)2\frac{\partial f}{\partial x} = \frac{4y(x^2 + y^2) - 4xy(2x)}{(x^2 + y^2)^2} = \frac{4y^3 - 4x^2y}{(x^2 + y^2)^2}. fx(1,2)=4(23)4(12)(2)(12+22)2=32825=2425\frac{\partial f}{\partial x}(1, 2) = \frac{4(2^3) - 4(1^2)(2)}{(1^2 + 2^2)^2} = \frac{32 - 8}{25} = \frac{24}{25}
* fy=4x(x2+y2)4xy(2y)(x2+y2)2=4x34xy2(x2+y2)2\frac{\partial f}{\partial y} = \frac{4x(x^2 + y^2) - 4xy(2y)}{(x^2 + y^2)^2} = \frac{4x^3 - 4xy^2}{(x^2 + y^2)^2}. fy(1,2)=4(13)4(1)(22)(12+22)2=41625=1225\frac{\partial f}{\partial y}(1, 2) = \frac{4(1^3) - 4(1)(2^2)}{(1^2 + 2^2)^2} = \frac{4 - 16}{25} = -\frac{12}{25}

2. a) $f(x, y) = x^2 + 3xy + y^2$

* fx=2x+3y\frac{\partial f}{\partial x} = 2x + 3y
* fy=3x+2y\frac{\partial f}{\partial y} = 3x + 2y
* 2fx2=2\frac{\partial^2 f}{\partial x^2} = 2
* 2fy2=2\frac{\partial^2 f}{\partial y^2} = 2
* 2fxy=3\frac{\partial^2 f}{\partial x \partial y} = 3
* 2fyx=3\frac{\partial^2 f}{\partial y \partial x} = 3
b) f(x,y)=x2+2y2f(x, y) = \sqrt{x^2 + 2y^2}
* fx=xx2+2y2\frac{\partial f}{\partial x} = \frac{x}{\sqrt{x^2 + 2y^2}}
* fy=2yx2+2y2\frac{\partial f}{\partial y} = \frac{2y}{\sqrt{x^2 + 2y^2}}
* 2fx2=x2+2y2xxx2+2y2x2+2y2=2y2(x2+2y2)3/2\frac{\partial^2 f}{\partial x^2} = \frac{\sqrt{x^2 + 2y^2} - x \frac{x}{\sqrt{x^2 + 2y^2}}}{x^2 + 2y^2} = \frac{2y^2}{(x^2 + 2y^2)^{3/2}}
* 2fy2=2x2+2y22y2yx2+2y2x2+2y2=2x2(x2+2y2)3/2\frac{\partial^2 f}{\partial y^2} = \frac{2\sqrt{x^2 + 2y^2} - 2y \frac{2y}{\sqrt{x^2 + 2y^2}}}{x^2 + 2y^2} = \frac{2x^2}{(x^2 + 2y^2)^{3/2}}
* 2fxy=2xy(x2+2y2)3/2\frac{\partial^2 f}{\partial x \partial y} = \frac{-2xy}{(x^2 + 2y^2)^{3/2}}
* 2fyx=2xy(x2+2y2)3/2\frac{\partial^2 f}{\partial y \partial x} = \frac{-2xy}{(x^2 + 2y^2)^{3/2}}
c) f(x,y)=ln(2x+y)f(x, y) = \ln(2x + y)
* fx=22x+y\frac{\partial f}{\partial x} = \frac{2}{2x + y}
* fy=12x+y\frac{\partial f}{\partial y} = \frac{1}{2x + y}
* 2fx2=4(2x+y)2\frac{\partial^2 f}{\partial x^2} = -\frac{4}{(2x + y)^2}
* 2fy2=1(2x+y)2\frac{\partial^2 f}{\partial y^2} = -\frac{1}{(2x + y)^2}
* 2fxy=2(2x+y)2\frac{\partial^2 f}{\partial x \partial y} = -\frac{2}{(2x + y)^2}
* 2fyx=2(2x+y)2\frac{\partial^2 f}{\partial y \partial x} = -\frac{2}{(2x + y)^2}
d) f(x,y)=2xex2+y2f(x, y) = 2xe^{x^2 + y^2}
* fx=2ex2+y2+2x(2x)ex2+y2=(2+4x2)ex2+y2\frac{\partial f}{\partial x} = 2e^{x^2 + y^2} + 2x(2x)e^{x^2 + y^2} = (2 + 4x^2)e^{x^2 + y^2}
* fy=2x(2y)ex2+y2=4xyex2+y2\frac{\partial f}{\partial y} = 2x(2y)e^{x^2 + y^2} = 4xye^{x^2 + y^2}
* 2fx2=8xex2+y2+(2+4x2)(2x)ex2+y2=(12x+8x3)ex2+y2\frac{\partial^2 f}{\partial x^2} = 8xe^{x^2 + y^2} + (2 + 4x^2)(2x)e^{x^2 + y^2} = (12x + 8x^3)e^{x^2 + y^2}
* 2fy2=4x(x2+y2)ex2+y2+4xy(2y)ex2+y2=(4x3+12xy2)ex2+y2\frac{\partial^2 f}{\partial y^2} = 4x(x^2 + y^2)e^{x^2 + y^2} + 4xy(2y)e^{x^2 + y^2} = (4x^3 + 12xy^2)e^{x^2 + y^2}
* 2fxy=4yex2+y2+4xy(2x)ex2+y2=(4y+8x2y)ex2+y2\frac{\partial^2 f}{\partial x \partial y} = 4ye^{x^2 + y^2} + 4xy(2x)e^{x^2 + y^2} = (4y + 8x^2y)e^{x^2 + y^2}
* 2fyx=(4y+8x2y)ex2+y2\frac{\partial^2 f}{\partial y \partial x} = (4y + 8x^2y)e^{x^2 + y^2}
これで問題の解答は以上となります。

「解析学」の関連問題