与えられた定積分の値を求めます。定積分は以下の通りです。 $2\pi \int_{0}^{\frac{\pi}{2}} (\sin{2x} + 2\sin{x})^2 dx$解析学定積分三角関数積分計算倍角の公式2025/6/291. 問題の内容与えられた定積分の値を求めます。定積分は以下の通りです。2π∫0π2(sin2x+2sinx)2dx2\pi \int_{0}^{\frac{\pi}{2}} (\sin{2x} + 2\sin{x})^2 dx2π∫02π(sin2x+2sinx)2dx2. 解き方の手順まず、積分の中身を展開します。(sin2x+2sinx)2=sin22x+4sin2xsinx+4sin2x(\sin{2x} + 2\sin{x})^2 = \sin^2{2x} + 4\sin{2x}\sin{x} + 4\sin^2{x}(sin2x+2sinx)2=sin22x+4sin2xsinx+4sin2x次に、倍角の公式 sin2x=2sinxcosx\sin{2x} = 2\sin{x}\cos{x}sin2x=2sinxcosx を用いて、式を書き換えます。sin22x+4sin2xsinx+4sin2x=(2sinxcosx)2+4(2sinxcosx)sinx+4sin2x\sin^2{2x} + 4\sin{2x}\sin{x} + 4\sin^2{x} = (2\sin{x}\cos{x})^2 + 4(2\sin{x}\cos{x})\sin{x} + 4\sin^2{x}sin22x+4sin2xsinx+4sin2x=(2sinxcosx)2+4(2sinxcosx)sinx+4sin2x=4sin2xcos2x+8sin2xcosx+4sin2x= 4\sin^2{x}\cos^2{x} + 8\sin^2{x}\cos{x} + 4\sin^2{x}=4sin2xcos2x+8sin2xcosx+4sin2x=4sin2x(cos2x+2cosx+1)=4sin2x(cosx+1)2= 4\sin^2{x}(\cos^2{x} + 2\cos{x} + 1) = 4\sin^2{x}(\cos{x}+1)^2=4sin2x(cos2x+2cosx+1)=4sin2x(cosx+1)2積分を計算します。2π∫0π24sin2x(cosx+1)2dx=8π∫0π2sin2x(cos2x+2cosx+1)dx2\pi \int_{0}^{\frac{\pi}{2}} 4\sin^2{x}(\cos{x}+1)^2 dx = 8\pi \int_{0}^{\frac{\pi}{2}} \sin^2{x}(\cos^2{x} + 2\cos{x} + 1) dx2π∫02π4sin2x(cosx+1)2dx=8π∫02πsin2x(cos2x+2cosx+1)dx=8π∫0π2sin2xcos2x+2sin2xcosx+sin2xdx= 8\pi \int_{0}^{\frac{\pi}{2}} \sin^2{x}\cos^2{x} + 2\sin^2{x}\cos{x} + \sin^2{x} dx=8π∫02πsin2xcos2x+2sin2xcosx+sin2xdx=8π∫0π214sin22x+2sin2xcosx+sin2xdx= 8\pi \int_{0}^{\frac{\pi}{2}} \frac{1}{4}\sin^2{2x} + 2\sin^2{x}\cos{x} + \sin^2{x} dx=8π∫02π41sin22x+2sin2xcosx+sin2xdx=8π[14∫0π2sin22xdx+2∫0π2sin2xcosxdx+∫0π2sin2xdx]= 8\pi [\frac{1}{4} \int_{0}^{\frac{\pi}{2}} \sin^2{2x} dx + 2 \int_{0}^{\frac{\pi}{2}} \sin^2{x}\cos{x} dx + \int_{0}^{\frac{\pi}{2}} \sin^2{x} dx]=8π[41∫02πsin22xdx+2∫02πsin2xcosxdx+∫02πsin2xdx]sin22x=1−cos4x2\sin^2{2x} = \frac{1-\cos{4x}}{2}sin22x=21−cos4x なので、∫0π2sin22xdx=∫0π21−cos4x2dx=[x2−sin4x8]0π2=π4\int_{0}^{\frac{\pi}{2}} \sin^2{2x} dx = \int_{0}^{\frac{\pi}{2}} \frac{1-\cos{4x}}{2} dx = [\frac{x}{2} - \frac{\sin{4x}}{8}]_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}∫02πsin22xdx=∫02π21−cos4xdx=[2x−8sin4x]02π=4π∫0π2sin2xcosxdx=[sin3x3]0π2=13\int_{0}^{\frac{\pi}{2}} \sin^2{x}\cos{x} dx = [\frac{\sin^3{x}}{3}]_{0}^{\frac{\pi}{2}} = \frac{1}{3}∫02πsin2xcosxdx=[3sin3x]02π=31sin2x=1−cos2x2\sin^2{x} = \frac{1-\cos{2x}}{2}sin2x=21−cos2x なので、∫0π2sin2xdx=∫0π21−cos2x2dx=[x2−sin2x4]0π2=π4\int_{0}^{\frac{\pi}{2}} \sin^2{x} dx = \int_{0}^{\frac{\pi}{2}} \frac{1-\cos{2x}}{2} dx = [\frac{x}{2} - \frac{\sin{2x}}{4}]_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}∫02πsin2xdx=∫02π21−cos2xdx=[2x−4sin2x]02π=4πしたがって、8π[14(π4)+2(13)+π4]=8π[π16+23+π4]=8π[π16+4π16+23]=8π[5π16+23]=5π22+16π38\pi [\frac{1}{4} (\frac{\pi}{4}) + 2 (\frac{1}{3}) + \frac{\pi}{4}] = 8\pi [\frac{\pi}{16} + \frac{2}{3} + \frac{\pi}{4}] = 8\pi [\frac{\pi}{16} + \frac{4\pi}{16} + \frac{2}{3}] = 8\pi [\frac{5\pi}{16} + \frac{2}{3}] = \frac{5\pi^2}{2} + \frac{16\pi}{3}8π[41(4π)+2(31)+4π]=8π[16π+32+4π]=8π[16π+164π+32]=8π[165π+32]=25π2+316π3. 最終的な答え5π22+16π3\frac{5\pi^2}{2} + \frac{16\pi}{3}25π2+316π