与えられた積分問題を解きます。具体的には、以下の8つの不定積分を計算します。 (1) $\int \frac{1}{(x+1)(2x+1)}dx$ (2) $\int \frac{x^2}{x^2-1}dx$ (3) $\int \frac{3x+2}{x^2(x+1)}dx$ (4) $\int \frac{1}{(x+1)(x+2)}dx$ (5) $\int \frac{x+5}{x(x^2+4x+5)}dx$ (6) $\int \frac{1}{x^3+1}dx$ (7) $\int \frac{x^4}{(x^2+2)^2}dx$ (8) $\int \frac{1}{(x-1)(x-2)(x-3)}dx$

解析学積分不定積分部分分数分解
2025/6/29

1. 問題の内容

与えられた積分問題を解きます。具体的には、以下の8つの不定積分を計算します。
(1) 1(x+1)(2x+1)dx\int \frac{1}{(x+1)(2x+1)}dx
(2) x2x21dx\int \frac{x^2}{x^2-1}dx
(3) 3x+2x2(x+1)dx\int \frac{3x+2}{x^2(x+1)}dx
(4) 1(x+1)(x+2)dx\int \frac{1}{(x+1)(x+2)}dx
(5) x+5x(x2+4x+5)dx\int \frac{x+5}{x(x^2+4x+5)}dx
(6) 1x3+1dx\int \frac{1}{x^3+1}dx
(7) x4(x2+2)2dx\int \frac{x^4}{(x^2+2)^2}dx
(8) 1(x1)(x2)(x3)dx\int \frac{1}{(x-1)(x-2)(x-3)}dx

2. 解き方の手順

(1) 1(x+1)(2x+1)dx\int \frac{1}{(x+1)(2x+1)}dx
部分分数分解を行います。
1(x+1)(2x+1)=Ax+1+B2x+1\frac{1}{(x+1)(2x+1)} = \frac{A}{x+1} + \frac{B}{2x+1}
1=A(2x+1)+B(x+1)1 = A(2x+1) + B(x+1)
x=1x = -1 のとき、1=A(2+1)+B(0)    A=11 = A(-2+1) + B(0) \implies A = -1
x=12x = -\frac{1}{2} のとき、1=A(0)+B(12+1)    1=12B    B=21 = A(0) + B(-\frac{1}{2}+1) \implies 1 = \frac{1}{2}B \implies B = 2
よって、1(x+1)(2x+1)=1x+1+22x+1\frac{1}{(x+1)(2x+1)} = \frac{-1}{x+1} + \frac{2}{2x+1}
1(x+1)(2x+1)dx=(1x+1+22x+1)dx=lnx+1+ln2x+1+C=ln2x+1x+1+C\int \frac{1}{(x+1)(2x+1)}dx = \int \left( \frac{-1}{x+1} + \frac{2}{2x+1} \right) dx = -\ln|x+1| + \ln|2x+1| + C = \ln\left| \frac{2x+1}{x+1} \right| + C
(2) x2x21dx\int \frac{x^2}{x^2-1}dx
x2x21=x21+1x21=1+1x21=1+1(x1)(x+1)\frac{x^2}{x^2-1} = \frac{x^2-1+1}{x^2-1} = 1 + \frac{1}{x^2-1} = 1 + \frac{1}{(x-1)(x+1)}
1(x1)(x+1)=Ax1+Bx+1\frac{1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}
1=A(x+1)+B(x1)1 = A(x+1) + B(x-1)
x=1x = 1 のとき、1=2A    A=121 = 2A \implies A = \frac{1}{2}
x=1x = -1 のとき、1=2B    B=121 = -2B \implies B = -\frac{1}{2}
よって、1x21=12(1x11x+1)\frac{1}{x^2-1} = \frac{1}{2}\left( \frac{1}{x-1} - \frac{1}{x+1} \right)
x2x21dx=(1+12(1x11x+1))dx=x+12(lnx1lnx+1)+C=x+12lnx1x+1+C\int \frac{x^2}{x^2-1}dx = \int \left( 1 + \frac{1}{2}\left( \frac{1}{x-1} - \frac{1}{x+1} \right) \right) dx = x + \frac{1}{2}(\ln|x-1| - \ln|x+1|) + C = x + \frac{1}{2}\ln\left| \frac{x-1}{x+1} \right| + C
(3) 3x+2x2(x+1)dx\int \frac{3x+2}{x^2(x+1)}dx
3x+2x2(x+1)=Ax+Bx2+Cx+1\frac{3x+2}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}
3x+2=Ax(x+1)+B(x+1)+Cx23x+2 = Ax(x+1) + B(x+1) + Cx^2
3x+2=Ax2+Ax+Bx+B+Cx23x+2 = Ax^2+Ax + Bx + B + Cx^2
3x+2=(A+C)x2+(A+B)x+B3x+2 = (A+C)x^2 + (A+B)x + B
A+C=0,A+B=3,B=2    A=1,C=1A+C=0, A+B=3, B=2 \implies A=1, C=-1
3x+2x2(x+1)=1x+2x21x+1\frac{3x+2}{x^2(x+1)} = \frac{1}{x} + \frac{2}{x^2} - \frac{1}{x+1}
3x+2x2(x+1)dx=(1x+2x21x+1)dx=lnx2xlnx+1+C=lnxx+12x+C\int \frac{3x+2}{x^2(x+1)}dx = \int \left( \frac{1}{x} + \frac{2}{x^2} - \frac{1}{x+1} \right) dx = \ln|x| - \frac{2}{x} - \ln|x+1| + C = \ln\left| \frac{x}{x+1} \right| - \frac{2}{x} + C
(4) 1(x+1)(x+2)dx\int \frac{1}{(x+1)(x+2)}dx
1(x+1)(x+2)=Ax+1+Bx+2\frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}
1=A(x+2)+B(x+1)1 = A(x+2) + B(x+1)
x=1x=-1 のとき、1=A    A=11 = A \implies A=1
x=2x=-2 のとき、1=B    B=11 = -B \implies B=-1
1(x+1)(x+2)dx=(1x+11x+2)dx=lnx+1lnx+2+C=lnx+1x+2+C\int \frac{1}{(x+1)(x+2)}dx = \int \left( \frac{1}{x+1} - \frac{1}{x+2} \right) dx = \ln|x+1| - \ln|x+2| + C = \ln\left| \frac{x+1}{x+2} \right| + C
(5) x+5x(x2+4x+5)dx\int \frac{x+5}{x(x^2+4x+5)}dx
x+5x(x2+4x+5)=Ax+Bx+Cx2+4x+5\frac{x+5}{x(x^2+4x+5)} = \frac{A}{x} + \frac{Bx+C}{x^2+4x+5}
x+5=A(x2+4x+5)+(Bx+C)xx+5 = A(x^2+4x+5) + (Bx+C)x
x+5=Ax2+4Ax+5A+Bx2+Cxx+5 = Ax^2 + 4Ax + 5A + Bx^2 + Cx
x+5=(A+B)x2+(4A+C)x+5Ax+5 = (A+B)x^2 + (4A+C)x + 5A
A+B=0,4A+C=1,5A=5    A=1,B=1,C=3A+B=0, 4A+C=1, 5A=5 \implies A=1, B=-1, C=-3
x+5x(x2+4x+5)=1x+x3x2+4x+5\frac{x+5}{x(x^2+4x+5)} = \frac{1}{x} + \frac{-x-3}{x^2+4x+5}
x+5x(x2+4x+5)dx=(1xx+3x2+4x+5)dx=1xdx122x+6x2+4x+5dx\int \frac{x+5}{x(x^2+4x+5)}dx = \int \left( \frac{1}{x} - \frac{x+3}{x^2+4x+5} \right) dx = \int \frac{1}{x}dx - \frac{1}{2}\int \frac{2x+6}{x^2+4x+5}dx
=lnx122x+4+2x2+4x+5dx=lnx12lnx2+4x+51(x+2)2+1dx=lnx12lnx2+4x+5arctan(x+2)+C= \ln|x| - \frac{1}{2}\int \frac{2x+4+2}{x^2+4x+5}dx = \ln|x| - \frac{1}{2}\ln|x^2+4x+5| - \int \frac{1}{(x+2)^2+1}dx = \ln|x| - \frac{1}{2}\ln|x^2+4x+5| - \arctan(x+2) + C
(6) 1x3+1dx\int \frac{1}{x^3+1}dx
1x3+1=1(x+1)(x2x+1)=Ax+1+Bx+Cx2x+1\frac{1}{x^3+1} = \frac{1}{(x+1)(x^2-x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}
1=A(x2x+1)+(Bx+C)(x+1)1 = A(x^2-x+1) + (Bx+C)(x+1)
1=Ax2Ax+A+Bx2+Bx+Cx+C1 = Ax^2 - Ax + A + Bx^2 + Bx + Cx + C
1=(A+B)x2+(A+B+C)x+(A+C)1 = (A+B)x^2 + (-A+B+C)x + (A+C)
A+B=0,A+B+C=0,A+C=1    A=13,B=13,C=23A+B=0, -A+B+C=0, A+C=1 \implies A=\frac{1}{3}, B=-\frac{1}{3}, C=\frac{2}{3}
1x3+1=131x+1+13x+2x2x+1\frac{1}{x^3+1} = \frac{1}{3}\frac{1}{x+1} + \frac{1}{3}\frac{-x+2}{x^2-x+1}
1x3+1dx=131x+1dx+13x+2x2x+1dx=13lnx+1162x4x2x+1dx=13lnx+1162x13x2x+1dx\int \frac{1}{x^3+1}dx = \frac{1}{3}\int \frac{1}{x+1}dx + \frac{1}{3}\int \frac{-x+2}{x^2-x+1}dx = \frac{1}{3}\ln|x+1| - \frac{1}{6}\int \frac{2x-4}{x^2-x+1}dx = \frac{1}{3}\ln|x+1| - \frac{1}{6}\int \frac{2x-1-3}{x^2-x+1}dx
=13lnx+116lnx2x+1+121x2x+1dx=13lnx+116lnx2x+1+121(x12)2+34dx= \frac{1}{3}\ln|x+1| - \frac{1}{6}\ln|x^2-x+1| + \frac{1}{2}\int \frac{1}{x^2-x+1}dx = \frac{1}{3}\ln|x+1| - \frac{1}{6}\ln|x^2-x+1| + \frac{1}{2}\int \frac{1}{(x-\frac{1}{2})^2 + \frac{3}{4}}dx
=13lnx+116lnx2x+1+1223arctan(x1232)+C=13lnx+116lnx2x+1+13arctan(2x13)+C= \frac{1}{3}\ln|x+1| - \frac{1}{6}\ln|x^2-x+1| + \frac{1}{2}\frac{2}{\sqrt{3}}\arctan\left( \frac{x-\frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C = \frac{1}{3}\ln|x+1| - \frac{1}{6}\ln|x^2-x+1| + \frac{1}{\sqrt{3}}\arctan\left( \frac{2x-1}{\sqrt{3}} \right) + C
(7) x4(x2+2)2dx\int \frac{x^4}{(x^2+2)^2}dx
x4(x2+2)2=14x2+4(x2+2)2=14(x2+2)4(x2+2)2=14x2+2+4(x2+2)2\frac{x^4}{(x^2+2)^2} = 1 - \frac{4x^2+4}{(x^2+2)^2}= 1 - \frac{4(x^2+2)-4}{(x^2+2)^2} = 1 - \frac{4}{x^2+2} + \frac{4}{(x^2+2)^2}
x4(x2+2)2dx=1dx41x2+2dx+41(x2+2)2dx\int \frac{x^4}{(x^2+2)^2}dx = \int 1 dx - 4\int \frac{1}{x^2+2}dx + 4\int \frac{1}{(x^2+2)^2}dx
=x42arctan(x2)+41(x2+2)2dx=x22arctan(x2)+41(x2+2)2dx= x - \frac{4}{\sqrt{2}} \arctan(\frac{x}{\sqrt{2}}) + 4\int \frac{1}{(x^2+2)^2}dx = x-2\sqrt{2} \arctan(\frac{x}{\sqrt{2}}) + 4\int \frac{1}{(x^2+2)^2}dx
I=1(x2+2)2dx=14xx2+2+142arctan(x2)I = \int \frac{1}{(x^2+2)^2} dx = \frac{1}{4} \frac{x}{x^2+2} + \frac{1}{4 \sqrt{2}} \arctan(\frac{x}{\sqrt{2}})
x4(x2+2)2dx=x22arctan(x2)+xx2+2+12arctan(x2)+C=x2arctan(x2)+xx2+2+C\int \frac{x^4}{(x^2+2)^2}dx = x-2\sqrt{2} \arctan(\frac{x}{\sqrt{2}}) + \frac{x}{x^2+2} + \frac{1}{\sqrt{2}} \arctan(\frac{x}{\sqrt{2}}) + C = x-\sqrt{2} \arctan(\frac{x}{\sqrt{2}}) + \frac{x}{x^2+2}+ C
(8) 1(x1)(x2)(x3)dx\int \frac{1}{(x-1)(x-2)(x-3)}dx
1(x1)(x2)(x3)=Ax1+Bx2+Cx3\frac{1}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}
1=A(x2)(x3)+B(x1)(x3)+C(x1)(x2)1 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2)
x=1    1=A(1)(2)=2A    A=12x=1 \implies 1= A(-1)(-2)=2A \implies A=\frac{1}{2}
x=2    1=B(1)(1)=B    B=1x=2 \implies 1 = B(1)(-1) = -B \implies B = -1
x=3    1=C(2)(1)=2C    C=12x=3 \implies 1 = C(2)(1) = 2C \implies C = \frac{1}{2}
1(x1)(x2)(x3)dx=(1/2x11x2+1/2x3)dx=12lnx1lnx2+12lnx3+C\int \frac{1}{(x-1)(x-2)(x-3)}dx = \int (\frac{1/2}{x-1} - \frac{1}{x-2} + \frac{1/2}{x-3})dx = \frac{1}{2} \ln|x-1| - \ln|x-2| + \frac{1}{2} \ln|x-3| + C
=12(lnx1+lnx3)lnx2+C=12ln(x1)(x3)lnx2+C=ln(x1)(x3)x2+C=\frac{1}{2}(\ln|x-1|+\ln|x-3|) - \ln|x-2| + C = \frac{1}{2} \ln|(x-1)(x-3)| - \ln|x-2| + C = \ln \frac{\sqrt{|(x-1)(x-3)|}}{|x-2|} + C

3. 最終的な答え

(1) ln2x+1x+1+C\ln\left| \frac{2x+1}{x+1} \right| + C
(2) x+12lnx1x+1+Cx + \frac{1}{2}\ln\left| \frac{x-1}{x+1} \right| + C
(3) lnxx+12x+C\ln\left| \frac{x}{x+1} \right| - \frac{2}{x} + C
(4) lnx+1x+2+C\ln\left| \frac{x+1}{x+2} \right| + C
(5) lnx12lnx2+4x+5arctan(x+2)+C\ln|x| - \frac{1}{2}\ln|x^2+4x+5| - \arctan(x+2) + C
(6) 13lnx+116lnx2x+1+13arctan(2x13)+C\frac{1}{3}\ln|x+1| - \frac{1}{6}\ln|x^2-x+1| + \frac{1}{\sqrt{3}}\arctan\left( \frac{2x-1}{\sqrt{3}} \right) + C
(7) x2arctan(x2)+xx2+2+Cx - \sqrt{2}\arctan\left( \frac{x}{\sqrt{2}} \right) + \frac{x}{x^2+2} + C
(8) ln(x1)(x3)x2+C\ln \frac{\sqrt{|(x-1)(x-3)|}}{|x-2|} + C

「解析学」の関連問題

$\sin\theta\cos\theta = -\frac{1}{4}$ のとき、$\theta$ の動径は第4象限にあるとして、次の値を求めよ。 (1) $\sin\theta - \cos\th...

三角関数三角関数の合成象限恒等式
2025/6/29

$S = \frac{1}{1+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{9}} + \frac{1}{\sqrt{9}+\sqrt{13}} + \cdots + \f...

数列有理化telescoping sum
2025/6/29

定積分 $\int_{-1}^{3} |x^2 - 4| dx$ を計算してください。

定積分絶対値積分計算
2025/6/29

$\cos \frac{5}{4}\pi$ の値を求めよ。

三角関数cos角度
2025/6/29

与えられた恒等式 $\frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right)$ を利用して...

級数部分分数分解望遠鏡和
2025/6/29

与えられた数列の和 $S$ を求めます。数列は以下の通りです。 $S = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4}...

数列級数部分分数分解telescoping sum望遠鏡和
2025/6/29

関数 $y = 2(\sin\theta + \cos\theta) + 2\sin\theta\cos\theta - 3$ ($0 \le \theta \le \pi$)について、次の問いに答え...

三角関数最大値最小値関数の合成三角関数の合成
2025/6/29

与えられた三角関数の式 $\sin(\theta + \frac{\pi}{3}) + \sin(\theta - \frac{\pi}{3}) - \sin(\theta)$ を簡単にせよ。

三角関数加法定理三角関数の簡約
2025/6/29

与えられた無限級数が収束することを示し、その和を求めます。問題は2つあります。 (1) $\frac{1}{2\cdot5} + \frac{1}{5\cdot8} + \frac{1}{8\cdot...

無限級数収束部分分数分解極限
2025/6/29

$0 \le x < 2\pi$ の範囲で、関数 $y = \cos 2x + \sin x$ の最大値、最小値とそのときの $x$ の値を求めよ。

三角関数最大値最小値二次関数微分
2025/6/29