与えられた恒等式 $\frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right)$ を利用して、和 $S = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)}$ を求めよ。

解析学級数部分分数分解望遠鏡和
2025/6/29

1. 問題の内容

与えられた恒等式 1(2k1)(2k+1)=12(12k112k+1)\frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right) を利用して、和 S=113+135+157++1(2n1)(2n+1)S = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)} を求めよ。

2. 解き方の手順

与えられた恒等式を利用して、各項を分解します。
S=113+135+157++1(2n1)(2n+1)S = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)}
S=12(1113)+12(1315)+12(1517)++12(12n112n+1)S = \frac{1}{2} \left( \frac{1}{1} - \frac{1}{3} \right) + \frac{1}{2} \left( \frac{1}{3} - \frac{1}{5} \right) + \frac{1}{2} \left( \frac{1}{5} - \frac{1}{7} \right) + \cdots + \frac{1}{2} \left( \frac{1}{2n-1} - \frac{1}{2n+1} \right)
S=12[(1113)+(1315)+(1517)++(12n112n+1)]S = \frac{1}{2} \left[ \left( \frac{1}{1} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{5} \right) + \left( \frac{1}{5} - \frac{1}{7} \right) + \cdots + \left( \frac{1}{2n-1} - \frac{1}{2n+1} \right) \right]
括弧内は、隣り合う項が打ち消しあうようにできています。これは、望遠鏡和(telescoping sum)と呼ばれるものです。
S=12(112n+1)S = \frac{1}{2} \left( 1 - \frac{1}{2n+1} \right)
S=12(2n+12n+112n+1)S = \frac{1}{2} \left( \frac{2n+1}{2n+1} - \frac{1}{2n+1} \right)
S=12(2n2n+1)S = \frac{1}{2} \left( \frac{2n}{2n+1} \right)
S=n2n+1S = \frac{n}{2n+1}

3. 最終的な答え

n2n+1\frac{n}{2n+1}

「解析学」の関連問題

与えられた逆三角関数の値を求める問題です。具体的には、arcsin, arccos, arctan の値が問われています。

逆三角関数arcsinarccosarctan三角関数
2025/6/29

問題は、以下の3つの逆数関数について、それぞれ値域と導関数を求めることです。 (1) $\csc \theta$ (2) $\sec \theta$ (3) $\cot \theta$

三角関数微分値域導関数コセカントセカントコタンジェント
2025/6/29

与えられた三角関数の導関数を求める問題です。具体的には、以下の4つの関数について導関数を計算します。 (1) $\sin \theta + \cos \theta$ (2) $\sin^2 \thet...

微分三角関数導関数合成関数の微分法
2025/6/29

以下の3つの三角関数の公式を示す問題です。 (5) $2 \sin x \cos y = \sin(x + y) + \sin(x - y)$ (6) $2 \cos x \cos y = \cos(...

三角関数加法定理三角関数の公式sincos
2025/6/29

関数 $y = \sin x - \sqrt{3} \cos x$ について、以下の問いに答える。ただし、$0 \le x < 2\pi$ とする。 (1) 関数の最大値、最小値と、そのときの $x$...

三角関数最大値最小値関数の合成不等式
2025/6/29

次の2つの極限を求めます。 (1) $\lim_{x\to 0} \frac{1-\cos x}{x^2}$ (2) $\lim_{x\to 0} \frac{x\sin x}{1-\cos x}$

極限三角関数lim微積分
2025/6/29

$0 \le \theta < 2\pi$ のとき、関数 $y = \frac{1}{2} \cos 2\theta + 2 \sin \theta + \frac{1}{2}$ の最大値と最小値、お...

三角関数最大値最小値合成微分
2025/6/29

以下の3つの極限を求める問題です。 (1) $\lim_{x \to 0} \frac{\sin 2x}{3x}$ (2) $\lim_{x \to 0} \frac{\tan x}{x}$ (3) ...

極限三角関数lim
2025/6/29

問題は、 $0 \le x < 2\pi$ の範囲で、(1) $\cos 2x = \sin x$ と (2) $\cos 2x < \sin x$ を解くことです。

三角関数方程式不等式三角関数の合成解の範囲
2025/6/29

与えられた関数の導関数を求める問題です。 具体的には、次の7つの関数について導関数を計算します。 (1) $(x^3 + 5x^2 + 3)^6$ (2) $(3x^2 + x + 4)(x^2 - ...

導関数微分合成関数の微分法積の微分法商の微分法数式処理
2025/6/29