与えられた級数 $S = 1 + 4x + 7x^2 + \dots + (3n-2)x^{n-1}$ の和を求める問題です。解析学級数等比数列和数列2025/6/301. 問題の内容与えられた級数 S=1+4x+7x2+⋯+(3n−2)xn−1S = 1 + 4x + 7x^2 + \dots + (3n-2)x^{n-1}S=1+4x+7x2+⋯+(3n−2)xn−1 の和を求める問題です。2. 解き方の手順まず、SSS に xxx をかけると、xS=x+4x2+7x3+⋯+(3n−2)xnxS = x + 4x^2 + 7x^3 + \dots + (3n-2)x^{n}xS=x+4x2+7x3+⋯+(3n−2)xn次に、SSS から xSxSxS を引くと、S−xS=(1+4x+7x2+⋯+(3n−2)xn−1)−(x+4x2+7x3+⋯+(3n−2)xn)S - xS = (1 + 4x + 7x^2 + \dots + (3n-2)x^{n-1}) - (x + 4x^2 + 7x^3 + \dots + (3n-2)x^{n})S−xS=(1+4x+7x2+⋯+(3n−2)xn−1)−(x+4x2+7x3+⋯+(3n−2)xn)S(1−x)=1+(4−1)x+(7−4)x2+⋯+(3n−2−(3(n−1)−2))xn−1−(3n−2)xnS(1-x) = 1 + (4-1)x + (7-4)x^2 + \dots + (3n-2 - (3(n-1)-2))x^{n-1} - (3n-2)x^nS(1−x)=1+(4−1)x+(7−4)x2+⋯+(3n−2−(3(n−1)−2))xn−1−(3n−2)xnS(1−x)=1+3x+3x2+⋯+3xn−1−(3n−2)xnS(1-x) = 1 + 3x + 3x^2 + \dots + 3x^{n-1} - (3n-2)x^nS(1−x)=1+3x+3x2+⋯+3xn−1−(3n−2)xnS(1−x)=1+3(x+x2+⋯+xn−1)−(3n−2)xnS(1-x) = 1 + 3(x + x^2 + \dots + x^{n-1}) - (3n-2)x^nS(1−x)=1+3(x+x2+⋯+xn−1)−(3n−2)xnここで、等比数列の和の公式 x+x2+⋯+xn−1=x(1−xn−1)1−xx + x^2 + \dots + x^{n-1} = \frac{x(1-x^{n-1})}{1-x}x+x2+⋯+xn−1=1−xx(1−xn−1) を用いると、S(1−x)=1+3x(1−xn−1)1−x−(3n−2)xnS(1-x) = 1 + 3\frac{x(1-x^{n-1})}{1-x} - (3n-2)x^nS(1−x)=1+31−xx(1−xn−1)−(3n−2)xnS(1−x)=1+3x−3xn1−x−(3n−2)xnS(1-x) = 1 + \frac{3x - 3x^n}{1-x} - (3n-2)x^nS(1−x)=1+1−x3x−3xn−(3n−2)xnS(1−x)=(1−x)+3x−3xn−(3n−2)xn(1−x)1−xS(1-x) = \frac{(1-x) + 3x - 3x^n - (3n-2)x^n(1-x)}{1-x}S(1−x)=1−x(1−x)+3x−3xn−(3n−2)xn(1−x)S(1−x)=1+2x−3xn−(3n−2)xn+(3n−2)xn+11−xS(1-x) = \frac{1 + 2x - 3x^n - (3n-2)x^n + (3n-2)x^{n+1}}{1-x}S(1−x)=1−x1+2x−3xn−(3n−2)xn+(3n−2)xn+1S(1−x)=1+2x−(3n+1)xn+(3n−2)xn+11−xS(1-x) = \frac{1 + 2x - (3n+1)x^n + (3n-2)x^{n+1}}{1-x}S(1−x)=1−x1+2x−(3n+1)xn+(3n−2)xn+1したがって、SSS はS=1+2x−(3n+1)xn+(3n−2)xn+1(1−x)2S = \frac{1 + 2x - (3n+1)x^n + (3n-2)x^{n+1}}{(1-x)^2}S=(1−x)21+2x−(3n+1)xn+(3n−2)xn+13. 最終的な答えS=1+2x−(3n+1)xn+(3n−2)xn+1(1−x)2S = \frac{1 + 2x - (3n+1)x^n + (3n-2)x^{n+1}}{(1-x)^2}S=(1−x)21+2x−(3n+1)xn+(3n−2)xn+1