与えられた極限値を求めます。 $\lim_{x \to 0} \frac{\sin(\sin(\frac{x}{\pi}))}{x}$解析学極限三角関数テイラー展開2025/6/301. 問題の内容与えられた極限値を求めます。limx→0sin(sin(xπ))x\lim_{x \to 0} \frac{\sin(\sin(\frac{x}{\pi}))}{x}limx→0xsin(sin(πx))2. 解き方の手順limx→0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1limx→0xsinx=1 を利用します。まず、sin(sin(xπ))x\frac{\sin(\sin(\frac{x}{\pi}))}{x}xsin(sin(πx)) を以下のように変形します。sin(sin(xπ))x=sin(sin(xπ))sin(xπ)⋅sin(xπ)xπ⋅xπx\frac{\sin(\sin(\frac{x}{\pi}))}{x} = \frac{\sin(\sin(\frac{x}{\pi}))}{\sin(\frac{x}{\pi})} \cdot \frac{\sin(\frac{x}{\pi})}{\frac{x}{\pi}} \cdot \frac{\frac{x}{\pi}}{x}xsin(sin(πx))=sin(πx)sin(sin(πx))⋅πxsin(πx)⋅xπxそれぞれの項の極限を計算します。x→0x \to 0x→0 のとき、xπ→0\frac{x}{\pi} \to 0πx→0 であり、sin(xπ)→0\sin(\frac{x}{\pi}) \to 0sin(πx)→0 であるため、limx→0sin(sin(xπ))sin(xπ)=1\lim_{x \to 0} \frac{\sin(\sin(\frac{x}{\pi}))}{\sin(\frac{x}{\pi})} = 1limx→0sin(πx)sin(sin(πx))=1limx→0sin(xπ)xπ=1\lim_{x \to 0} \frac{\sin(\frac{x}{\pi})}{\frac{x}{\pi}} = 1limx→0πxsin(πx)=1limx→0xπx=1π\lim_{x \to 0} \frac{\frac{x}{\pi}}{x} = \frac{1}{\pi}limx→0xπx=π1したがって、limx→0sin(sin(xπ))x=1⋅1⋅1π=1π\lim_{x \to 0} \frac{\sin(\sin(\frac{x}{\pi}))}{x} = 1 \cdot 1 \cdot \frac{1}{\pi} = \frac{1}{\pi}limx→0xsin(sin(πx))=1⋅1⋅π1=π13. 最終的な答え1π\frac{1}{\pi}π1