正五角形ABCDEがある。(1)5個の頂点のうち3点を結んで三角形を作るとき、三角形は何個できるか。(2)対角線は何本あるか。

幾何学正五角形組み合わせ対角線図形
2025/7/1

1. 問題の内容

正五角形ABCDEがある。(1)5個の頂点のうち3点を結んで三角形を作るとき、三角形は何個できるか。(2)対角線は何本あるか。

2. 解き方の手順

(1)5つの頂点から3つを選ぶ組み合わせを考えます。これは組み合わせの記号で 5C3_5C_3 と表されます。
5C3=5!3!(53)!=5!3!2!=5×4×3×2×1(3×2×1)(2×1)=5×42=10_5C_3 = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(2 \times 1)} = \frac{5 \times 4}{2} = 10
(2)対角線は、正五角形の頂点から自分自身と隣り合う頂点を除いた頂点を結ぶ線です。
正五角形には5つの頂点があり、それぞれの頂点から引ける対角線は2本です(自分自身と両隣の頂点を除く)。
したがって、一見すると対角線の数は 5×2=105 \times 2 = 10 本となります。
しかし、この計算では各対角線を2回数えているため、2で割る必要があります。
したがって、対角線の数は 102=5\frac{10}{2} = 5 本です。
または、正五角形の5つの頂点から2つを選ぶ組み合わせから、辺の数(5)を引くことでも求められます。
5C2=5!2!3!=5×42=10_5C_2 = \frac{5!}{2!3!} = \frac{5 \times 4}{2} = 10
辺の数を引くと 105=510-5=5

3. 最終的な答え

(1) 10個
(2) 5本

「幾何学」の関連問題

円 $C: (x-1)^2 + y^2 = 5$ と直線 $l: y = 2x + k$ の位置関係が、定数 $k$ の値によってどのように変わるかを求める問題です。

直線位置関係距離代数
2025/7/1

与えられた2つの放物線について、その概形を描き、焦点と準線を求めよ。 (1) $x^2 = 4y$ (2) $y = -2x^2$

放物線焦点準線二次曲線
2025/7/1

点(5, 6)を通り、円 $(x-3)^2 + (y-1)^2 = 4$ に接する直線の方程式を求める問題です。

接線点と直線の距離方程式
2025/7/1

三角形ABCにおいて、$a=\sqrt{6}$, $b=3+\sqrt{3}$, $C=45^\circ$のとき、残りの辺$c$の長さと角$A$, $B$の大きさを求めよ。

三角比余弦定理正弦定理三角形
2025/7/1

三角形ABCにおいて、$b = 2\sqrt{3}$, $c = 3 - \sqrt{3}$, $A = 120^\circ$のとき、残りの辺の長さ$a$と角の大きさ$B$,$C$を求めよ。

三角形余弦定理正弦定理三角比角度
2025/7/1

一辺の長さが6cmの立方体ABCD-EFGHから、三角錐A-BDEを取り除いた立体の体積を求める。

体積立方体三角錐空間図形
2025/7/1

底面の半径が $r$、高さが $h$ の円柱がある。 (1) この円柱の体積を $V$ とするとき、$V$ を $r$ と $h$ を用いて表す。ただし、円周率は $\pi$ とする。 (2) この円...

体積円柱半径高さ計算
2025/7/1

問題48: 右の長方形において、辺ADと辺DCの位置関係を記号で答えなさい。 問題49: 右の図の$\triangle DBE$は、$\triangle ABC$を回転移動したものである。辺ACと長さ...

長方形垂直回転移動合同辺の長さ
2025/7/1

底面の半径が $r$、高さが $h$ の円錐があります。この円錐の底面の半径を2倍、高さを $\frac{1}{2}$ にすると、体積は何倍になるかを求める問題です。

円錐体積幾何
2025/7/1

半径 $r$ 、高さ $h$ の円柱について、以下の問いに答える問題です。 (1) 円柱の体積 $V$ を $r$ と $h$ を用いて表す。 (2) 高さを半分にした円柱の体積 $V'$ が、$V$...

円柱体積計算
2025/7/1