$\int_{1/e}^{1} x^2 \log x \, dx$ を計算します。解析学積分部分積分定積分2025/7/11. 問題の内容∫1/e1x2logx dx\int_{1/e}^{1} x^2 \log x \, dx∫1/e1x2logxdx を計算します。2. 解き方の手順部分積分を用いて積分を計算します。u=logxu = \log xu=logx, dv=x2dxdv = x^2 dxdv=x2dx とおくと、du=1xdxdu = \frac{1}{x} dxdu=x1dx, v=x33v = \frac{x^3}{3}v=3x3 となります。部分積分の公式 ∫u dv=uv−∫v du\int u \, dv = uv - \int v \, du∫udv=uv−∫vdu を用いると、∫x2logx dx=x33logx−∫x33⋅1x dx=x33logx−∫x23 dx=x33logx−x39+C\int x^2 \log x \, dx = \frac{x^3}{3} \log x - \int \frac{x^3}{3} \cdot \frac{1}{x} \, dx = \frac{x^3}{3} \log x - \int \frac{x^2}{3} \, dx = \frac{x^3}{3} \log x - \frac{x^3}{9} + C∫x2logxdx=3x3logx−∫3x3⋅x1dx=3x3logx−∫3x2dx=3x3logx−9x3+Cしたがって、∫1/e1x2logx dx=[x33logx−x39]1/e1 \int_{1/e}^1 x^2 \log x \, dx = \left[ \frac{x^3}{3} \log x - \frac{x^3}{9} \right]_{1/e}^1 ∫1/e1x2logxdx=[3x3logx−9x3]1/e1=(133log1−139)−((1/e)33log(1/e)−(1/e)39) = \left( \frac{1^3}{3} \log 1 - \frac{1^3}{9} \right) - \left( \frac{(1/e)^3}{3} \log (1/e) - \frac{(1/e)^3}{9} \right) =(313log1−913)−(3(1/e)3log(1/e)−9(1/e)3)=(0−19)−(13e3(−loge)−19e3) = \left( 0 - \frac{1}{9} \right) - \left( \frac{1}{3e^3} (-\log e) - \frac{1}{9e^3} \right) =(0−91)−(3e31(−loge)−9e31)=−19−(−13e3−19e3)=−19+13e3+19e3 = -\frac{1}{9} - \left( -\frac{1}{3e^3} - \frac{1}{9e^3} \right) = -\frac{1}{9} + \frac{1}{3e^3} + \frac{1}{9e^3} =−91−(−3e31−9e31)=−91+3e31+9e31=−19+39e3+19e3=−19+49e3=49e3−19 = -\frac{1}{9} + \frac{3}{9e^3} + \frac{1}{9e^3} = -\frac{1}{9} + \frac{4}{9e^3} = \frac{4}{9e^3} - \frac{1}{9} =−91+9e33+9e31=−91+9e34=9e34−913. 最終的な答え49e3−19\frac{4}{9e^3} - \frac{1}{9}9e34−91