関数 $y = \log_2(x+3)$ の逆関数を求める問題です。

解析学逆関数対数関数指数関数
2025/7/3

1. 問題の内容

関数 y=log2(x+3)y = \log_2(x+3) の逆関数を求める問題です。

2. 解き方の手順

逆関数を求めるには、xxyy を入れ替えて、yy について解きます。
まず、xxyy を入れ替えます。
x=log2(y+3)x = \log_2(y+3)
次に、yy について解きます。
2x=y+32^x = y+3
y=2x3y = 2^x - 3

3. 最終的な答え

y=2x3y = 2^x - 3

「解析学」の関連問題

$0 \le x \le \pi$ のとき、次の関数の最大値・最小値と、そのときの $x$ の値を求めよ。 (1) $y = \sin x + 1$ (2) $y = 2\cos(x + \frac{...

三角関数最大値最小値関数のグラフ
2025/7/3

関数 $y = 2\cos(x + \frac{\pi}{3}) - 1$ の最大値と最小値、およびそれらをとる時の $x$ の値を求める。

三角関数最大値最小値cos関数周期関数
2025/7/3

問題は、与えられた図と数式に基づき、$0 \le x \le \pi$ の範囲において、$y = 2\cos(x + \frac{\pi}{3}) - 1$ の最大値と最小値を求める問題です。

三角関数最大値最小値グラフ
2025/7/3

実数 $x$ に対して、無限級数 $x + \frac{x}{1+x-x^2} + \frac{x}{(1+x-x^2)^2} + \frac{x}{(1+x-x^2)^3} + \cdots$ が収...

無限級数等比数列収束不等式
2025/7/3

与えられた3つの極限を求める問題です。 (1) $\lim_{n\to\infty} \frac{1}{n} \left( \sin \frac{\pi}{n} + \sin \frac{2\pi}{...

極限リーマン和積分定積分
2025/7/3

実数 $x$ に対し、無限級数 $x + \frac{x}{1+x-x^2} + \frac{x}{(1+x-x^2)^2} + \frac{x}{(1+x-x^2)^3} + \dots$ が収束す...

無限級数収束等比級数不等式
2025/7/3

与えられた無限級数 $\sum_{n=1}^{\infty} \frac{2^n + 3^n}{5^n}$ の和を求める問題です。

無限級数等比級数級数の和
2025/7/3

無限等比級数 $\sum_{n=1}^{\infty} 3(\frac{1}{2})^{n-1}$ の和を求めます。

無限級数等比級数級数の和
2025/7/3

以下の二つの不定積分を求めます。 (1) $\int \frac{1}{x + \sqrt{x^2 + 1}} dx$ (2) $\int \frac{1}{(x+1)\sqrt{x^2+x+1}} ...

不定積分置換積分有理化双曲線関数
2025/7/3

関数 $y = 3^{-x}$ のグラフを描く問題です。

指数関数グラフ関数のグラフ減少関数
2025/7/3