$3 \times 4 \div 2 = 6$ (cm$^2$)

幾何学表面積三角柱直角三角形
2025/7/3
## 問題の内容
図1の立体の表面積を求めます。この立体は、直角三角形を底面とする三角柱です。底面の直角三角形の辺の長さは3cmと4cmで、斜辺の長さは5cmです。また、三角柱の高さは5cmです。
## 解き方の手順

1. 底面積を計算します。底面は直角三角形なので、面積は $ (底辺 \times 高さ) \div 2 $ で求められます。

3×4÷2=63 \times 4 \div 2 = 6 (cm2^2)

2. 側面積を計算します。側面積は、底面の周の長さに高さをかけたものです。底面の周の長さは、3cm + 4cm + 5cm = 12cmです。高さは5cmなので、側面積は $12 \times 5 = 60$ (cm$^2$)です。

3. 表面積を計算します。表面積は、底面積の2倍と側面積を足したものです。

6×2+60=12+60=726 \times 2 + 60 = 12 + 60 = 72 (cm2^2)
## 最終的な答え
72 cm2^2

「幾何学」の関連問題

図において、$x$の値を求める問題です。図には、三角形ABCの外側に点P, Q, Rがあり、それぞれ点C, A, Bから接線が引かれています。AR = $x$, AQ = 4, BR = 4, BP ...

接線三角形外接長さ
2025/7/3

図において、AR:RB = 1:2, BQ:QA = 3:3 = 1:1, CP:PB = 2:3であるとき、CQ:QA = xを求める問題です。

チェバの定理三角形
2025/7/3

(1) 三角形ABCにおいて、線分AR、BP、CQが一点で交わるとき、チェバの定理を用いてx (線分BPの長さ) を求める。 (2) 三角形ABCにおいて、線分AR、BP、CQが一点で交わるとき、チェ...

チェバの定理三角形線分比
2025/7/3

三角形ABCにおいて、点P, Q, Rがそれぞれ辺BC, CA, AB上にあり、線分AP, BQ, CRが一点で交わっているとき、チェバの定理を用いて $x$ を求めます。チェバの定理は、 $...

チェバの定理メネラウスの定理三角形
2025/7/3

平行四辺形ABCDにおいて、辺BCの中点をE、辺CDの中点をFとする。対角線BDとAEの交点をP、対角線BDとAFの交点をQとする。このとき、線分PQとBDの長さの比 $PQ:BD$ を求めよ。

ベクトル平行四辺形線分の比
2025/7/3

$\angle A = 90^\circ$, $AB = 4$, $AC = 3$ である直角三角形 $ABC$ について、その重心を $G$ とするとき、$\triangle GBC$ の面積を求め...

三角形重心面積直角三角形
2025/7/3

三角形ABCにおいて、$AB=6$, $BC=5$, $CA=3$であり、内心をIとする。直線AIと辺BCの交点をDとする。以下の問いに答える。 (1) 線分BDの長さを求めよ。 (2) AI:IDを...

三角形内心角の二等分線
2025/7/3

三角形ABCにおいて、角BACは$20^\circ + \beta$、角ACBは$30^\circ$、角ABCは$\alpha$です。また、点Oは三角形ABCの内部にあり、角OACは$\beta$、角...

三角形角度内角の和角の計算
2025/7/3

問題は、点Oが三角形ABCの外心であるとき、与えられた図に基づいて角 $\alpha$ と $\beta$ の値を求める問題です。3つの図それぞれについて、$\alpha$ と $\beta$ を求め...

外心三角形角度二等辺三角形角の計算
2025/7/3

問題11:方程式 $x^2 + y^2 + 2tx - 4ty + 5t^2 - t = 0$ が円を表すとき、$t$ の値が変化すると円の中心Pはどのような曲線を描くか。 問題12:$a$ は正の定...

極座標直交座標曲線
2025/7/3