三角形ABCにおいて、$AB=4$, $BC=\sqrt{21}$, $\angle A=60^\circ$のとき、$CA$の長さを求めよ。

幾何学三角形余弦定理辺の長さ
2025/7/3

1. 問題の内容

三角形ABCにおいて、AB=4AB=4, BC=21BC=\sqrt{21}, A=60\angle A=60^\circのとき、CACAの長さを求めよ。

2. 解き方の手順

余弦定理を用いる。A\angle Aに対する余弦定理は、
BC2=AB2+CA22ABCAcosABC^2 = AB^2 + CA^2 - 2 \cdot AB \cdot CA \cdot \cos A
である。
与えられた値を代入すると、
(21)2=42+CA224CAcos60(\sqrt{21})^2 = 4^2 + CA^2 - 2 \cdot 4 \cdot CA \cdot \cos 60^\circ
21=16+CA28CA1221 = 16 + CA^2 - 8 \cdot CA \cdot \frac{1}{2}
21=16+CA24CA21 = 16 + CA^2 - 4CA
CA24CA5=0CA^2 - 4CA - 5 = 0
(CA5)(CA+1)=0(CA - 5)(CA + 1) = 0
CA=5CA = 5 または CA=1CA = -1
CACAは三角形の辺の長さなので、CA>0CA > 0である。
したがって、CA=5CA=5である。

3. 最終的な答え

5

「幾何学」の関連問題

図において、AR:RB = 1:2, BQ:QA = 3:3 = 1:1, CP:PB = 2:3であるとき、CQ:QA = xを求める問題です。

チェバの定理三角形
2025/7/3

(1) 三角形ABCにおいて、線分AR、BP、CQが一点で交わるとき、チェバの定理を用いてx (線分BPの長さ) を求める。 (2) 三角形ABCにおいて、線分AR、BP、CQが一点で交わるとき、チェ...

チェバの定理三角形線分比
2025/7/3

三角形ABCにおいて、点P, Q, Rがそれぞれ辺BC, CA, AB上にあり、線分AP, BQ, CRが一点で交わっているとき、チェバの定理を用いて $x$ を求めます。チェバの定理は、 $...

チェバの定理メネラウスの定理三角形
2025/7/3

平行四辺形ABCDにおいて、辺BCの中点をE、辺CDの中点をFとする。対角線BDとAEの交点をP、対角線BDとAFの交点をQとする。このとき、線分PQとBDの長さの比 $PQ:BD$ を求めよ。

ベクトル平行四辺形線分の比
2025/7/3

$\angle A = 90^\circ$, $AB = 4$, $AC = 3$ である直角三角形 $ABC$ について、その重心を $G$ とするとき、$\triangle GBC$ の面積を求め...

三角形重心面積直角三角形
2025/7/3

三角形ABCにおいて、$AB=6$, $BC=5$, $CA=3$であり、内心をIとする。直線AIと辺BCの交点をDとする。以下の問いに答える。 (1) 線分BDの長さを求めよ。 (2) AI:IDを...

三角形内心角の二等分線
2025/7/3

三角形ABCにおいて、角BACは$20^\circ + \beta$、角ACBは$30^\circ$、角ABCは$\alpha$です。また、点Oは三角形ABCの内部にあり、角OACは$\beta$、角...

三角形角度内角の和角の計算
2025/7/3

問題は、点Oが三角形ABCの外心であるとき、与えられた図に基づいて角 $\alpha$ と $\beta$ の値を求める問題です。3つの図それぞれについて、$\alpha$ と $\beta$ を求め...

外心三角形角度二等辺三角形角の計算
2025/7/3

問題11:方程式 $x^2 + y^2 + 2tx - 4ty + 5t^2 - t = 0$ が円を表すとき、$t$ の値が変化すると円の中心Pはどのような曲線を描くか。 問題12:$a$ は正の定...

極座標直交座標曲線
2025/7/3

楕円 $4x^2 + y^2 = 4$ と直線 $y = -x + k$ が異なる2点Q, Rで交わるとき、線分QRの中点Pの軌跡を求める問題です。

楕円直線軌跡判別式解と係数の関係
2025/7/3