連続する2つの自然数があり、大きい方の数の2乗から小さい方の数の2倍を引いた差が26になる。この2つの自然数を求める。

代数学二次方程式方程式自然数問題解決
2025/7/3

1. 問題の内容

連続する2つの自然数があり、大きい方の数の2乗から小さい方の数の2倍を引いた差が26になる。この2つの自然数を求める。

2. 解き方の手順

小さい方の自然数を xx とすると、大きい方の自然数は x+1x+1 と表せる。
問題文より、(x+1)22x=26 (x+1)^2 - 2x = 26 という方程式が成り立つ。
この方程式を解く。
まず、式を展開する。
x2+2x+12x=26 x^2 + 2x + 1 - 2x = 26
x2+1=26 x^2 + 1 = 26
次に、x2 x^2 について解く。
x2=261 x^2 = 26 - 1
x2=25 x^2 = 25
xx を求める。xx は自然数なので、
x=25=5 x = \sqrt{25} = 5
小さい方の自然数は x=5 x = 5 である。
大きい方の自然数は x+1=5+1=6 x+1 = 5+1 = 6 である。

3. 最終的な答え

2つの自然数は 5 と 6 である。

「代数学」の関連問題

不等式 $x^2 - (a+1)x + a < 0$ を満たす整数 $x$ がちょうど2個だけ存在するような定数 $a$ の値の範囲を求めよ。

二次不等式因数分解整数解不等式の解の範囲
2025/7/3

与えられた4つの2次関数について、グラフを描き、頂点の座標と軸の方程式を求める。 (1) $y = 2x^2 - 4x + 2$ (2) $y = -\frac{1}{2}x^2 + x - 1$ (...

二次関数グラフ頂点平方完成
2025/7/3

与えられた4つの2次式を平方完成する問題です。 (1) $2x^2 - 8x - 3$ (2) $3x^2 + 9x + 4$ (3) $-2x^2 + 4x + 3$ (4) $-2x^2 - 6x...

二次関数平方完成
2025/7/3

与えられた8個の2次式をそれぞれ平方完成する問題です。

二次式平方完成
2025/7/3

与えられた4つの2次関数について、それぞれのグラフを描き、頂点の座標と軸の方程式を求める。 (1) $y = (x-2)^2$ (2) $y = 2(x+1)^2$ (3) $y = -(x-3)^2...

二次関数グラフ頂点
2025/7/3

与えられた不等式(i)から(vi)に対して、$x$の値の範囲を求めよ。 (i) $x^2 - 4x \geq 0$ (ii) $x^2 - 6x + 8 < 0$ (iii) $x^2 - 4 > 0...

不等式二次不等式因数分解解の範囲
2025/7/3

問題は、次の3つの数式を解くことです。 (1) $|2x-1|=3x$ (2) $|x+\frac{1}{3}| > 2x+1$ (3) $|x+4|+|x-1|=7$

絶対値方程式不等式場合分け
2025/7/3

ある高校の1年生全員が長椅子に座るとき、1脚に6人ずつ座ると15人が座れなくなる。また、1脚に7人ずつ座ると、使わない長椅子が3脚できる。長椅子の数は何脚以上何脚以下か。

不等式文章問題連立不等式線形計画法
2025/7/3

$x$ についての不等式 $x + a \ge 4x + 9$ について、以下の問いに答えます。 * (1) 解が $x \le 2$ となるように、定数 $a$ の値を求めます。 ...

不等式連立不等式文章題
2025/7/3

問題21は、$x$についての不等式 $x + a \geq 4x + 9$ について、以下の2つの問いに答えるものです。 (1) 解が $x \leq 2$ となるように、定数 $a$ の値を定める。...

不等式一次不等式解の範囲定数
2025/7/3