初項が8、末項が-84、項数が20の等差数列の和 $S$ を求める問題です。

代数学等差数列数列の和公式
2025/7/3

1. 問題の内容

初項が8、末項が-84、項数が20の等差数列の和 SS を求める問題です。

2. 解き方の手順

等差数列の和の公式を利用します。初項を aa、末項を ll、項数を nn とすると、等差数列の和 SS は次の式で表されます。
S=n(a+l)2S = \frac{n(a + l)}{2}
問題文より、a=8a = 8l=84l = -84n=20n = 20 であるので、これらの値を上記の公式に代入します。
S=20(8+(84))2S = \frac{20(8 + (-84))}{2}
S=20×(76)2S = \frac{20 \times (-76)}{2}
S=10×(76)S = 10 \times (-76)
S=760S = -760

3. 最終的な答え

-760

「代数学」の関連問題

与えられた6つの数式を計算する問題です。 (1) $2a \times 3ab \times 4b$ (2) $-5xy \times 7yx \times (-2x)$ (3) $4a \times...

式の計算文字式計算
2025/7/3

与えられた4つの式を計算して簡単にします。 (1) $(-6ab) \div 2a$ (2) $8x^2 \div x$ (3) $(-9x^2y) \div (-3y)$ (4) $5a^2 \di...

式の計算単項式除算約分
2025/7/3

次の計算をしなさい。 (1) $(-7a)^2$ (2) $\frac{1}{3}x \times (3x)^2$ (3) $-(4x)^2$ (4) $(-a)^2 \times 3a$

式の計算指数法則単項式
2025/7/3

## 問題の内容

単項式掛け算文字式
2025/7/3

問題は、与えられた和をシグマ記号 $\sum$ を用いて表す問題です。具体的には、 (1) $1^2 + 3^2 + 5^2 + 7^2 + 9^2 + 11^2$ を $\sum_{k=1}^{6}...

シグマ数列和の計算
2025/7/3

与えられた2つの数式をそれぞれ計算せよ。 (1) $\frac{1}{3}(x-2y) + \frac{1}{5}(-x+3y)$ (2) $\frac{1}{4}(3x-y) - \frac{1}{...

式の計算一次式分配法則同類項
2025/7/3

次の条件によって定められる数列$\{a_n\}$の一般項を求める。 (1) $a_1 = 1$, $a_2 = 2$, $a_{n+2} + 3a_{n+1} - 4a_n = 0$ (2) $a_1...

数列漸化式特性方程式
2025/7/3

2点$(-1,1)$と$(3,6)$を通る直線の方程式を求める問題です。

直線の方程式座標傾き
2025/7/3

与えられた一次関数のグラフと$x$軸、及び$y$軸との交点の座標を求める。ただし、一次関数の具体的な式は与えられていない。

一次関数グラフ座標
2025/7/3

不等式 $x^2 - (a+1)x + a < 0$ を満たす整数 $x$ がちょうど2個だけ存在するような定数 $a$ の値の範囲を求めよ。

二次不等式因数分解整数解不等式の解の範囲
2025/7/3