次の計算をしなさい。 (1) $(-7a)^2$ (2) $\frac{1}{3}x \times (3x)^2$ (3) $-(4x)^2$ (4) $(-a)^2 \times 3a$

代数学式の計算指数法則単項式
2025/7/3

1. 問題の内容

次の計算をしなさい。
(1) (7a)2(-7a)^2
(2) 13x×(3x)2\frac{1}{3}x \times (3x)^2
(3) (4x)2-(4x)^2
(4) (a)2×3a(-a)^2 \times 3a

2. 解き方の手順

(1) (7a)2=(7)2×a2=49a2(-7a)^2 = (-7)^2 \times a^2 = 49a^2
(2) 13x×(3x)2=13x×9x2=3x3\frac{1}{3}x \times (3x)^2 = \frac{1}{3}x \times 9x^2 = 3x^3
(3) (4x)2=(42×x2)=16x2-(4x)^2 = - (4^2 \times x^2) = -16x^2
(4) (a)2×3a=a2×3a=3a3(-a)^2 \times 3a = a^2 \times 3a = 3a^3

3. 最終的な答え

(1) 49a249a^2
(2) 3x33x^3
(3) 16x2-16x^2
(4) 3a33a^3

「代数学」の関連問題

正の数 $x, y$ が不等式 $(\log_2 x)^2 + (\log_2 y)^2 \leq \log_2 \frac{x^2}{2\sqrt{2}y^2}$ を満たしながら動くとき、以下の問い...

対数不等式最大値二次関数
2025/7/3

ベクトル $\vec{a} = (3, 1)$、$\vec{b} = (1, 2)$ が与えられ、ベクトル $\vec{c} = \vec{a} + t\vec{b}$ ($t$ は実数)と定義される...

ベクトルベクトルの演算絶対値二次方程式最小値
2025/7/3

与えられた行列 $A$ と $B$ に対して、行列方程式 $AX = B$ を満たす行列 $X$ を求めます。この問題には2つのケースがあります。

線形代数行列行列方程式行基本変形逆行列
2025/7/3

行列 $A$ と $B$ が与えられたとき、行列方程式 $AX = B$ を満たす行列 $X$ を求める問題です。2つの問題があります。 (1) $A = \begin{pmatrix} 1 & 2 ...

線形代数行列行列方程式行基本変形
2025/7/3

与えられた3つの行列について、掃き出し法を用いて逆行列を求める。

逆行列掃き出し法行列
2025/7/3

与えられた4つの式を因数分解する問題です。 (1) $x^2+2x-y^2-4y-3$ (2) $3x^2+4xy+y^2+9x+5y+6$ (3) $2x^2-8xy+6y^2+7x-y-15$ (...

因数分解多項式式の展開たすき掛け
2025/7/3

与えられた3つの行列に対して、掃き出し法を用いて逆行列を求める。

行列逆行列掃き出し法
2025/7/3

与えられた行列の逆行列を掃き出し法で求めます。 与えられた行列を $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 2 & 3 & -1 \end{pmat...

行列逆行列行列方程式掃き出し法
2025/7/3

行列 $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 3 & 3 & 2 \end{pmatrix}$ と $B = \begin{pmatrix} 1 ...

線形代数行列行列方程式行基本変形
2025/7/3

与えられた条件を満たす2次関数を求める問題です。具体的には以下の3つの小問があります。 (1) $x=3$ で最小値 $-5$ をとり、点 $(-1, 3)$ を通る2次関数を求める。 (2) $y=...

二次関数2次関数の決定平方完成平行移動最大値最小値
2025/7/3