与えられた6つの根号を含む分数を計算し、できる限り簡約化し、必要に応じて分母の有理化を行う問題です。 (1) $\frac{\sqrt{6}}{\sqrt{10}}$ (2) $\frac{\sqrt{18}}{\sqrt{12}}$ (3) $\frac{\sqrt{15}}{\sqrt{21}}$ (4) $\frac{\sqrt{3}}{\sqrt{6}} = \frac{1}{\sqrt{2}}$ (5) $\frac{\sqrt{8}}{5\sqrt{24}}$ (6) $\frac{2\sqrt{27}}{3\sqrt{45}}$

算数平方根分数の計算有理化根号
2025/7/4

1. 問題の内容

与えられた6つの根号を含む分数を計算し、できる限り簡約化し、必要に応じて分母の有理化を行う問題です。
(1) 610\frac{\sqrt{6}}{\sqrt{10}}
(2) 1812\frac{\sqrt{18}}{\sqrt{12}}
(3) 1521\frac{\sqrt{15}}{\sqrt{21}}
(4) 36=12\frac{\sqrt{3}}{\sqrt{6}} = \frac{1}{\sqrt{2}}
(5) 8524\frac{\sqrt{8}}{5\sqrt{24}}
(6) 227345\frac{2\sqrt{27}}{3\sqrt{45}}

2. 解き方の手順

(1) 610=610=35=35=3×55×5=155\frac{\sqrt{6}}{\sqrt{10}} = \sqrt{\frac{6}{10}} = \sqrt{\frac{3}{5}} = \frac{\sqrt{3}}{\sqrt{5}} = \frac{\sqrt{3} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{\sqrt{15}}{5}
(2) 1812=1812=32=32=3×22×2=62\frac{\sqrt{18}}{\sqrt{12}} = \sqrt{\frac{18}{12}} = \sqrt{\frac{3}{2}} = \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}
(3) 1521=1521=57=57=5×77×7=357\frac{\sqrt{15}}{\sqrt{21}} = \sqrt{\frac{15}{21}} = \sqrt{\frac{5}{7}} = \frac{\sqrt{5}}{\sqrt{7}} = \frac{\sqrt{5} \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}} = \frac{\sqrt{35}}{7}
(4) 36=12=22×2=22\frac{\sqrt{3}}{\sqrt{6}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{2}}{2}
(5) 8524=858×3=8583=153=3533=35×3=315\frac{\sqrt{8}}{5\sqrt{24}} = \frac{\sqrt{8}}{5\sqrt{8 \times 3}} = \frac{\sqrt{8}}{5\sqrt{8}\sqrt{3}} = \frac{1}{5\sqrt{3}} = \frac{\sqrt{3}}{5\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}}{5 \times 3} = \frac{\sqrt{3}}{15}
(6) 227345=29×339×5=2×333×35=6395=2335=23×535×5=2153×5=21515\frac{2\sqrt{27}}{3\sqrt{45}} = \frac{2\sqrt{9 \times 3}}{3\sqrt{9 \times 5}} = \frac{2 \times 3\sqrt{3}}{3 \times 3\sqrt{5}} = \frac{6\sqrt{3}}{9\sqrt{5}} = \frac{2\sqrt{3}}{3\sqrt{5}} = \frac{2\sqrt{3} \times \sqrt{5}}{3\sqrt{5} \times \sqrt{5}} = \frac{2\sqrt{15}}{3 \times 5} = \frac{2\sqrt{15}}{15}

3. 最終的な答え

(1) 155\frac{\sqrt{15}}{5}
(2) 62\frac{\sqrt{6}}{2}
(3) 357\frac{\sqrt{35}}{7}
(4) 22\frac{\sqrt{2}}{2}
(5) 315\frac{\sqrt{3}}{15}
(6) 21515\frac{2\sqrt{15}}{15}