点Pは直線 $y = x + 4$ 上の点であり、点Aは $PO = PA$ となるx軸上の点です。三角形POAの面積が45 $cm^2$ となるときの点Pの座標を求める問題です。
2025/3/31
1. 問題の内容
点Pは直線 上の点であり、点Aは となるx軸上の点です。三角形POAの面積が45 となるときの点Pの座標を求める問題です。
2. 解き方の手順
まず、点Pの座標を とおきます。点Aはx軸上の点なので、その座標を とおきます。
より、 が成り立ちます。
したがって、 が成り立ち、これを整理すると、
なので、 が得られます。したがって、 です。
よって、点Aの座標は となります。
三角形POAの面積は、 で計算できます。
したがって、
のとき、点Pの座標は となり、このときOAは-18となりますが面積を考える際には絶対値を取るので問題ありません.
のとき、点Pの座標は となり、このときOAは10となります。
選択肢にある点Pの座標は なので、これが答えであると考えられます。また、三角形POAの面積は となるので、条件を満たします。
3. 最終的な答え
(5, 9)