定積分 $\int_{-1}^{3} \frac{1}{x^2+3} dx$ を計算します。解析学定積分不定積分置換積分arctan2025/7/71. 問題の内容定積分 ∫−131x2+3dx\int_{-1}^{3} \frac{1}{x^2+3} dx∫−13x2+31dx を計算します。2. 解き方の手順まず、不定積分 ∫1x2+3dx\int \frac{1}{x^2+3} dx∫x2+31dx を求めます。x=3tanθx = \sqrt{3} \tan \thetax=3tanθ と置換すると、dx=3sec2θdθdx = \sqrt{3} \sec^2 \theta d\thetadx=3sec2θdθ となります。∫1x2+3dx=∫13tan2θ+33sec2θdθ\int \frac{1}{x^2+3} dx = \int \frac{1}{3\tan^2\theta + 3} \sqrt{3}\sec^2\theta d\theta∫x2+31dx=∫3tan2θ+313sec2θdθ=∫3sec2θ3(tan2θ+1)dθ= \int \frac{\sqrt{3}\sec^2\theta}{3(\tan^2\theta + 1)} d\theta=∫3(tan2θ+1)3sec2θdθ=∫3sec2θ3sec2θdθ= \int \frac{\sqrt{3}\sec^2\theta}{3\sec^2\theta} d\theta=∫3sec2θ3sec2θdθ=∫33dθ= \int \frac{\sqrt{3}}{3} d\theta=∫33dθ=33θ+C= \frac{\sqrt{3}}{3} \theta + C=33θ+C=33arctan(x3)+C= \frac{\sqrt{3}}{3} \arctan \left( \frac{x}{\sqrt{3}} \right) + C=33arctan(3x)+Cしたがって、∫1x2+3dx=13arctan(x3)+C\int \frac{1}{x^2+3} dx = \frac{1}{\sqrt{3}} \arctan \left( \frac{x}{\sqrt{3}} \right) + C∫x2+31dx=31arctan(3x)+C次に、定積分を計算します。∫−131x2+3dx=[13arctan(x3)]−13\int_{-1}^{3} \frac{1}{x^2+3} dx = \left[ \frac{1}{\sqrt{3}} \arctan \left( \frac{x}{\sqrt{3}} \right) \right]_{-1}^{3}∫−13x2+31dx=[31arctan(3x)]−13=13arctan(33)−13arctan(−13)= \frac{1}{\sqrt{3}} \arctan \left( \frac{3}{\sqrt{3}} \right) - \frac{1}{\sqrt{3}} \arctan \left( \frac{-1}{\sqrt{3}} \right)=31arctan(33)−31arctan(3−1)=13arctan(3)−13arctan(−13)= \frac{1}{\sqrt{3}} \arctan (\sqrt{3}) - \frac{1}{\sqrt{3}} \arctan \left( -\frac{1}{\sqrt{3}} \right)=31arctan(3)−31arctan(−31)=13⋅π3−13⋅(−π6)= \frac{1}{\sqrt{3}} \cdot \frac{\pi}{3} - \frac{1}{\sqrt{3}} \cdot \left( -\frac{\pi}{6} \right)=31⋅3π−31⋅(−6π)=π33+π63= \frac{\pi}{3\sqrt{3}} + \frac{\pi}{6\sqrt{3}}=33π+63π=2π+π63= \frac{2\pi + \pi}{6\sqrt{3}}=632π+π=3π63= \frac{3\pi}{6\sqrt{3}}=633π=π23= \frac{\pi}{2\sqrt{3}}=23π=π36= \frac{\pi \sqrt{3}}{6}=6π33. 最終的な答えπ36\frac{\pi \sqrt{3}}{6}6π3