問題は、次の循環小数を分数で表すことです。 (1) $0.\dot{7}$ (2) $3.\dot{7}\dot{2}$ (3) $1.\dot{2}1\dot{6}$ (4) $0.2\dot{4}\dot{6}$算数循環小数分数2025/7/81. 問題の内容問題は、次の循環小数を分数で表すことです。(1) 0.7˙0.\dot{7}0.7˙(2) 3.7˙2˙3.\dot{7}\dot{2}3.7˙2˙(3) 1.2˙16˙1.\dot{2}1\dot{6}1.2˙16˙(4) 0.24˙6˙0.2\dot{4}\dot{6}0.24˙6˙2. 解き方の手順(1) x=0.7˙x = 0.\dot{7}x=0.7˙ とおく。10x=7.7˙10x = 7.\dot{7}10x=7.7˙10x−x=7.7˙−0.7˙=710x - x = 7.\dot{7} - 0.\dot{7} = 710x−x=7.7˙−0.7˙=79x=79x = 79x=7x=79x = \frac{7}{9}x=97(2) x=3.7˙2˙x = 3.\dot{7}\dot{2}x=3.7˙2˙ とおく。100x=372.7˙2˙100x = 372.\dot{7}\dot{2}100x=372.7˙2˙100x−x=372.7˙2˙−3.7˙2˙=369100x - x = 372.\dot{7}\dot{2} - 3.\dot{7}\dot{2} = 369100x−x=372.7˙2˙−3.7˙2˙=36999x=36999x = 36999x=369x=36999=4111x = \frac{369}{99} = \frac{41}{11}x=99369=1141(3) x=1.2˙16˙x = 1.\dot{2}1\dot{6}x=1.2˙16˙ とおく。100x=121.62˙1100x = 121.6\dot{2}1100x=121.62˙11000x=1216.2˙16˙1000x = 1216.\dot{2}1\dot{6}1000x=1216.2˙16˙1000x−x=1216.2˙16˙−1.2˙16˙=12151000x - x = 1216.\dot{2}1\dot{6} - 1.\dot{2}1\dot{6} = 12151000x−x=1216.2˙16˙−1.2˙16˙=1215999x=1215999x = 1215999x=1215x=1215999=405333=135111=4537x = \frac{1215}{999} = \frac{405}{333} = \frac{135}{111} = \frac{45}{37}x=9991215=333405=111135=3745(4) x=0.24˙6˙x = 0.2\dot{4}\dot{6}x=0.24˙6˙ とおく。10x=2.4˙6˙10x = 2.\dot{4}\dot{6}10x=2.4˙6˙1000x=246.4˙6˙1000x = 246.\dot{4}\dot{6}1000x=246.4˙6˙1000x−10x=246.4˙6˙−2.4˙6˙=2441000x - 10x = 246.\dot{4}\dot{6} - 2.\dot{4}\dot{6} = 2441000x−10x=246.4˙6˙−2.4˙6˙=244990x=244990x = 244990x=244x=244990=122495x = \frac{244}{990} = \frac{122}{495}x=990244=4951223. 最終的な答え(1) 79\frac{7}{9}97(2) 4111\frac{41}{11}1141(3) 4537\frac{45}{37}3745(4) 122495\frac{122}{495}495122