We are asked to evaluate the infinite sum $\sum_{n=1}^{\infty} n (\frac{1}{3})^n$.

AnalysisInfinite SeriesDifferentiationGeometric Series
2025/3/10

1. Problem Description

We are asked to evaluate the infinite sum n=1n(13)n\sum_{n=1}^{\infty} n (\frac{1}{3})^n.

2. Solution Steps

We can use the formula for the sum of the series n=1nxn\sum_{n=1}^{\infty} nx^{n}, where x<1|x|<1.
Consider the geometric series:
n=0xn=11x\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} for x<1|x| < 1.
Differentiating both sides with respect to xx, we get:
n=1nxn1=1(1x)2\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2} for x<1|x| < 1.
Multiplying both sides by xx, we get:
n=1nxn=x(1x)2\sum_{n=1}^{\infty} nx^{n} = \frac{x}{(1-x)^2} for x<1|x| < 1.
Now, we can substitute x=13x = \frac{1}{3} into the formula.
n=1n(13)n=13(113)2=13(23)2=1349=1394=34\sum_{n=1}^{\infty} n(\frac{1}{3})^n = \frac{\frac{1}{3}}{(1-\frac{1}{3})^2} = \frac{\frac{1}{3}}{(\frac{2}{3})^2} = \frac{\frac{1}{3}}{\frac{4}{9}} = \frac{1}{3} \cdot \frac{9}{4} = \frac{3}{4}.

3. Final Answer

34\frac{3}{4}

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1