不等式 $5(x-3) \geq 2x$ を解く問題です。

代数学不等式一次不等式不等式の解法
2025/7/9

1. 問題の内容

不等式 5(x3)2x5(x-3) \geq 2x を解く問題です。

2. 解き方の手順

まず、左辺の括弧を展開します。
5x152x5x - 15 \geq 2x
次に、xxの項を左辺に、定数項を右辺に移行します。
5x2x155x - 2x \geq 15
左辺を計算します。
3x153x \geq 15
最後に、両辺を3で割ります。
x153x \geq \frac{15}{3}
x5x \geq 5

3. 最終的な答え

x5x \geq 5

「代数学」の関連問題

多項式 $P(x) = x^3 + 5x^2 + ax + 20$ を $x+1$ で割ったときの余りが $3a$ であるとき、定数 $a$ の値を求めよ。

多項式剰余の定理因数定理代入
2025/7/10

2次関数 $y = -x^2 - 8x + 1$ のグラフの軸と頂点を求め、そのグラフを描画すること。

二次関数グラフ平方完成頂点
2025/7/10

与えられた2次関数 $P(x) = 2x^2 + 6x + 1$ に対して、$P(0)$と$P(-4)$の値を求める。

二次関数関数の値
2025/7/10

与えられた二次関数 $y = -x^2 - 8x + 1$ について、$x = -3, -2, -1, 0, 1, 2, 3$ のときの $y$ の値を計算し、表を完成させる問題です。

二次関数関数の計算代入
2025/7/10

与えられた関数 $y = -(x-2)^2 + 2$ に対して、xの値が-3, -2, -1, 0, 1, 2, 3のときのyの値を求め、表を完成させる問題です。

二次関数関数の計算グラフ
2025/7/10

与えられた連立一次方程式の係数行列をAとします。 (1) Aの行列式|A|の値を求めます。 (2) クラーメルの公式を用いてyの値を求めます。 連立一次方程式は以下の通りです。 $3x + 6y - ...

連立一次方程式行列式クラーメルの公式線形代数
2025/7/10

3次方程式 $x^3 + 5x^2 - 4 = 0$ の解を求める問題です。

高次方程式因数定理解の公式複素数
2025/7/10

問題は、関数 $y = (x+1)^2 - 2$ について、与えられた $x$ の値(-3, -2, -1, 0, 1, 2, 3)に対応する $y$ の値を計算することです。

二次関数関数の計算
2025/7/10

関数 $P(x) = 2x^2 + 6x + 1$ が与えられています。このとき、$P(0)$ の値を求める問題です。

関数多項式関数の値
2025/7/10

2次方程式 $x^2 + x - 3 = 0$ の2つの解を $\alpha$、$\beta$ とするとき、$\alpha - 1$、$\beta - 1$ を解とする2次方程式を1つ作成してください...

二次方程式解と係数の関係解の変換
2025/7/10