1. 問題の内容
定積分 を計算します。
2. 解き方の手順
まず、被積分関数を展開します。
\begin{align*}
-2(x-\alpha)(x-\beta) &= -2(x^2 - (\alpha + \beta)x + \alpha\beta) \\
&= -2x^2 + 2(\alpha + \beta)x - 2\alpha\beta
\end{align*}
次に、定積分を計算します。
\begin{align*}
\int_{\beta}^{\alpha} (-2x^2 + 2(\alpha + \beta)x - 2\alpha\beta) \, dx &= \left[-\frac{2}{3}x^3 + (\alpha + \beta)x^2 - 2\alpha\beta x\right]_{\beta}^{\alpha} \\
&= \left(-\frac{2}{3}\alpha^3 + (\alpha + \beta)\alpha^2 - 2\alpha\beta \alpha\right) - \left(-\frac{2}{3}\beta^3 + (\alpha + \beta)\beta^2 - 2\alpha\beta \beta\right) \\
&= -\frac{2}{3}(\alpha^3 - \beta^3) + (\alpha + \beta)(\alpha^2 - \beta^2) - 2\alpha\beta (\alpha - \beta) \\
&= -\frac{2}{3}(\alpha - \beta)(\alpha^2 + \alpha\beta + \beta^2) + (\alpha + \beta)(\alpha - \beta)(\alpha + \beta) - 2\alpha\beta(\alpha - \beta) \\
&= (\alpha - \beta) \left[-\frac{2}{3}(\alpha^2 + \alpha\beta + \beta^2) + (\alpha + \beta)^2 - 2\alpha\beta\right] \\
&= (\alpha - \beta) \left[-\frac{2}{3}\alpha^2 - \frac{2}{3}\alpha\beta - \frac{2}{3}\beta^2 + \alpha^2 + 2\alpha\beta + \beta^2 - 2\alpha\beta\right] \\
&= (\alpha - \beta) \left[\frac{1}{3}\alpha^2 - \frac{2}{3}\alpha\beta + \frac{1}{3}\beta^2\right] \\
&= \frac{1}{3}(\alpha - \beta)(\alpha^2 - 2\alpha\beta + \beta^2) \\
&= \frac{1}{3}(\alpha - \beta)(\alpha - \beta)^2 \\
&= \frac{1}{3}(\alpha - \beta)^3
\end{align*}