円の中に四角形ABCDがあり、線分ABは円の直径になっています。$\angle DAB = 65^\circ$、$\angle ACB = 90^\circ$のとき、$\angle ACD = x$を求めよ。

幾何学四角形円周角内接四角形角度
2025/7/16

1. 問題の内容

円の中に四角形ABCDがあり、線分ABは円の直径になっています。DAB=65\angle DAB = 65^\circACB=90\angle ACB = 90^\circのとき、ACD=x\angle ACD = xを求めよ。

2. 解き方の手順

まず、円周角の定理より、直径ABに対する円周角ACB\angle ACB9090^\circです(問題文にも記載あり)。
四角形ABCDは円に内接しているので、対角の和は180180^\circです。よって、
BCD+BAD=180\angle BCD + \angle BAD = 180^\circ
BCD+65=180\angle BCD + 65^\circ = 180^\circ
BCD=18065=115\angle BCD = 180^\circ - 65^\circ = 115^\circ
また、BCD=BCA+ACD\angle BCD = \angle BCA + \angle ACD なので、
115=90+x115^\circ = 90^\circ + x
x=11590x = 115^\circ - 90^\circ
x=25x = 25^\circ

3. 最終的な答え

x=25x = 25^\circ

「幾何学」の関連問題

写真には、三角形ABCとその高さHが描かれており、$c \sin A = a \sin C$ や $\frac{c}{\sin C} = \frac{a}{\sin A}$ という式が書かれています。...

正弦定理三角形三角比幾何
2025/7/16

画像には三角形ABCがあり、頂点Cから辺ABに垂線CHが引かれています。辺BCの長さは$a$、辺ABの長さは$c$と表記されています。 画像には $c \sin A = a \sin C$ と書かれて...

三角形正弦定理三角比面積
2025/7/16

問題は、与えられた座標の点がどの象限に位置するかを答える問題です。具体的には、以下の4つの点について、それぞれの象限を答えます。 * 点(-4, 1) * 点(3, -3) * 点(1, ...

座標象限平面
2025/7/16

直角三角形ABCにおいて、点Aから辺BCに下ろした垂線の足をHとする。また、辺BCの長さを$a$とする。AHの長さを求める問題であると推測されます。

直角三角形三角比正弦幾何
2025/7/16

直角三角形ABCがあり、角Aから辺BCへの垂線をAHとする。この時、線分AHの長さを求めたい。図から、線分AHの長さは $a\sin C$ と表されることを示す必要がある。

直角三角形三角比垂線正弦幾何学的証明
2025/7/16

問題は、与えられた三角形ABCにおいて、点Bから辺ACに下ろした垂線の足をHとし、線分BHの長さを求める問題です。辺BCの長さが$a$、角Cが与えられています。また、図から線分BHの長さは$a\sin...

三角形直角三角形三角比正弦
2025/7/16

問題は、角度が35度の場合のサイン(sin)と、角度が20度の場合のコサイン(cos)の値を求めることです。

三角関数サインコサイン角度三角比
2025/7/16

問題は、与えられた直角三角形に対して、sin(33°)とcos(42°)を求める問題です。

三角比sincos直角三角形近似値
2025/7/16

与えられた三角形の残りの辺の長さを求める問題です。 三角形の一辺の長さは4、別の辺の長さは2、そしてその間の角度は120度です。残りの辺の長さを求めます。

三角形余弦定理辺の長さ角度
2025/7/16

三角形ABCにおいて、$b=3, c=8, A=135^\circ$ のとき、面積Sを求め、S = ア $\sqrt{イ}$ の形で表したときのアとイを答える問題です。

三角形面積三角比正弦幾何
2025/7/16