関数 $f(x, y) = xy(1-x)(2-y)$ の $0 \leq x \leq 1$, $0 \leq y \leq 2$ における最大値を求めます。
2025/7/17
1. 問題の内容
関数 の , における最大値を求めます。
2. 解き方の手順
まず、をとについてそれぞれ偏微分します。
次に、偏微分したものが0になる点を求めます。
より、またはまたは
より、またはまたは
これらの条件から、, の範囲で考えられる臨界点は、
です。
次に境界での値を調べます。
のとき、
のとき、
のとき、
のとき、
したがって、境界では常に0になります。
次に、臨界点での値を計算します。
他の点として、変数が境界値を取る場合も考慮します。例えば、, のとき、となります。
したがって、最大値はでの値であると予想されます。