与えられた不定積分を計算します。 (1) $\int \frac{\sqrt[5]{x}+2x}{x^2} dx$ (2) $\int (x^3\sqrt{x}-5^x) dx$ (3) $\int (4e^x+3\tan{x}) dx$ (4) $\int (2x+1)(x^2+x+1) dx$ (5) $\int \frac{\log{|x|}}{x} dx$ (6) $\int \frac{2x+3}{x^2+3x+1} dx$ (7) $\int x\cos{x} dx$ (8) $\int \frac{1}{x^2+x-6} dx$ (9) $\int \frac{1}{x^2(x+1)} dx$

解析学不定積分積分計算部分積分有理関数の積分
2025/7/22
はい、承知いたしました。それでは、画像にある問題のうち、(1), (2), (3), (4), (5), (6), (7), (8), (9) の不定積分を求めます。

1. 問題の内容

与えられた不定積分を計算します。
(1) x5+2xx2dx\int \frac{\sqrt[5]{x}+2x}{x^2} dx
(2) (x3x5x)dx\int (x^3\sqrt{x}-5^x) dx
(3) (4ex+3tanx)dx\int (4e^x+3\tan{x}) dx
(4) (2x+1)(x2+x+1)dx\int (2x+1)(x^2+x+1) dx
(5) logxxdx\int \frac{\log{|x|}}{x} dx
(6) 2x+3x2+3x+1dx\int \frac{2x+3}{x^2+3x+1} dx
(7) xcosxdx\int x\cos{x} dx
(8) 1x2+x6dx\int \frac{1}{x^2+x-6} dx
(9) 1x2(x+1)dx\int \frac{1}{x^2(x+1)} dx

2. 解き方の手順

(1) x5+2xx2dx=(x9/5+2x1)dx=x4/54/5+2logx+C=54x4/5+2logx+C\int \frac{\sqrt[5]{x}+2x}{x^2} dx = \int (x^{-9/5} + 2x^{-1}) dx = \frac{x^{-4/5}}{-4/5} + 2\log{|x|} + C = -\frac{5}{4}x^{-4/5} + 2\log{|x|} + C
(2) (x3x5x)dx=(x7/25x)dx=x9/29/25xlog5+C=29x9/25xlog5+C\int (x^3\sqrt{x}-5^x) dx = \int (x^{7/2}-5^x) dx = \frac{x^{9/2}}{9/2} - \frac{5^x}{\log{5}} + C = \frac{2}{9}x^{9/2} - \frac{5^x}{\log{5}} + C
(3) (4ex+3tanx)dx=4exdx+3tanxdx=4ex3logcosx+C\int (4e^x+3\tan{x}) dx = 4\int e^x dx + 3\int \tan{x} dx = 4e^x - 3\log{|\cos{x}|} + C
(4) (2x+1)(x2+x+1)dx=(2x3+3x2+3x+1)dx=2x44+3x33+3x22+x+C=12x4+x3+32x2+x+C\int (2x+1)(x^2+x+1) dx = \int (2x^3 + 3x^2 + 3x + 1) dx = \frac{2x^4}{4} + \frac{3x^3}{3} + \frac{3x^2}{2} + x + C = \frac{1}{2}x^4 + x^3 + \frac{3}{2}x^2 + x + C
(5) logxxdx\int \frac{\log{|x|}}{x} dx.
u=logxu = \log{|x|} とおくと、du=1xdxdu = \frac{1}{x} dx.
udu=12u2+C=12(logx)2+C\int u du = \frac{1}{2}u^2 + C = \frac{1}{2}(\log{|x|})^2 + C
(6) 2x+3x2+3x+1dx\int \frac{2x+3}{x^2+3x+1} dx.
u=x2+3x+1u = x^2+3x+1 とおくと、du=(2x+3)dxdu = (2x+3)dx.
1udu=logu+C=logx2+3x+1+C\int \frac{1}{u} du = \log{|u|} + C = \log{|x^2+3x+1|} + C
(7) xcosxdx\int x\cos{x} dx.
部分積分を使用する。u=x,dv=cosxdxu=x, dv=\cos{x} dx.
du=dx,v=sinxdu=dx, v=\sin{x}.
xcosxdx=xsinxsinxdx=xsinx+cosx+C\int x\cos{x} dx = x\sin{x} - \int \sin{x} dx = x\sin{x} + \cos{x} + C
(8) 1x2+x6dx=1(x+3)(x2)dx=Ax+3+Bx2dx\int \frac{1}{x^2+x-6} dx = \int \frac{1}{(x+3)(x-2)} dx = \int \frac{A}{x+3} + \frac{B}{x-2} dx
1=A(x2)+B(x+3)1 = A(x-2) + B(x+3)
x=2    1=5B    B=1/5x=2 \implies 1 = 5B \implies B = 1/5
x=3    1=5A    A=1/5x=-3 \implies 1 = -5A \implies A = -1/5
1/5x+3+1/5x2dx=15logx+3+15logx2+C=15logx2x+3+C\int \frac{-1/5}{x+3} + \frac{1/5}{x-2} dx = -\frac{1}{5}\log{|x+3|} + \frac{1}{5}\log{|x-2|} + C = \frac{1}{5}\log{\left|\frac{x-2}{x+3}\right|} + C
(9) 1x2(x+1)dx=Ax+Bx2+Cx+1dx\int \frac{1}{x^2(x+1)} dx = \int \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1} dx
1=Ax(x+1)+B(x+1)+Cx21 = Ax(x+1) + B(x+1) + Cx^2
x=0    1=Bx=0 \implies 1 = B
x=1    1=Cx=-1 \implies 1 = C
x=1    1=2A+2B+C=2A+2+1    2=2A    A=1x=1 \implies 1 = 2A + 2B + C = 2A + 2 + 1 \implies -2 = 2A \implies A = -1
1x+1x2+1x+1dx=logx1x+logx+1+C=logx+1x1x+C\int \frac{-1}{x} + \frac{1}{x^2} + \frac{1}{x+1} dx = -\log{|x|} - \frac{1}{x} + \log{|x+1|} + C = \log{\left|\frac{x+1}{x}\right|} - \frac{1}{x} + C

3. 最終的な答え

(1) 54x4/5+2logx+C-\frac{5}{4}x^{-4/5} + 2\log{|x|} + C
(2) 29x9/25xlog5+C\frac{2}{9}x^{9/2} - \frac{5^x}{\log{5}} + C
(3) 4ex3logcosx+C4e^x - 3\log{|\cos{x}|} + C
(4) 12x4+x3+32x2+x+C\frac{1}{2}x^4 + x^3 + \frac{3}{2}x^2 + x + C
(5) 12(logx)2+C\frac{1}{2}(\log{|x|})^2 + C
(6) logx2+3x+1+C\log{|x^2+3x+1|} + C
(7) xsinx+cosx+Cx\sin{x} + \cos{x} + C
(8) 15logx2x+3+C\frac{1}{5}\log{\left|\frac{x-2}{x+3}\right|} + C
(9) logx+1x1x+C\log{\left|\frac{x+1}{x}\right|} - \frac{1}{x} + C