与えられた関数 $y = (x-2)(x^4 + 2x^3 + 3x^2 + 4x + 5)$ を微分せよ。解析学微分積の微分多項式2025/7/231. 問題の内容与えられた関数 y=(x−2)(x4+2x3+3x2+4x+5)y = (x-2)(x^4 + 2x^3 + 3x^2 + 4x + 5)y=(x−2)(x4+2x3+3x2+4x+5) を微分せよ。2. 解き方の手順積の微分公式 (uv)′=u′v+uv′(uv)' = u'v + uv'(uv)′=u′v+uv′ を用いる。ここで、u=x−2u = x-2u=x−2、v=x4+2x3+3x2+4x+5v = x^4 + 2x^3 + 3x^2 + 4x + 5v=x4+2x3+3x2+4x+5 とおく。まず、uuu を xxx で微分する。u′=ddx(x−2)=1u' = \frac{d}{dx}(x-2) = 1u′=dxd(x−2)=1次に、vvv を xxx で微分する。v′=ddx(x4+2x3+3x2+4x+5)=4x3+6x2+6x+4v' = \frac{d}{dx}(x^4 + 2x^3 + 3x^2 + 4x + 5) = 4x^3 + 6x^2 + 6x + 4v′=dxd(x4+2x3+3x2+4x+5)=4x3+6x2+6x+4積の微分公式を用いると、y′=u′v+uv′=1⋅(x4+2x3+3x2+4x+5)+(x−2)(4x3+6x2+6x+4)y' = u'v + uv' = 1 \cdot (x^4 + 2x^3 + 3x^2 + 4x + 5) + (x-2)(4x^3 + 6x^2 + 6x + 4)y′=u′v+uv′=1⋅(x4+2x3+3x2+4x+5)+(x−2)(4x3+6x2+6x+4)y′=x4+2x3+3x2+4x+5+(4x4+6x3+6x2+4x−8x3−12x2−12x−8)y' = x^4 + 2x^3 + 3x^2 + 4x + 5 + (4x^4 + 6x^3 + 6x^2 + 4x - 8x^3 - 12x^2 - 12x - 8)y′=x4+2x3+3x2+4x+5+(4x4+6x3+6x2+4x−8x3−12x2−12x−8)y′=x4+2x3+3x2+4x+5+4x4−2x3−6x2−8x−8y' = x^4 + 2x^3 + 3x^2 + 4x + 5 + 4x^4 - 2x^3 - 6x^2 - 8x - 8y′=x4+2x3+3x2+4x+5+4x4−2x3−6x2−8x−8y′=5x4+0x3−3x2−4x−3y' = 5x^4 + 0x^3 - 3x^2 - 4x - 3y′=5x4+0x3−3x2−4x−3y′=5x4−3x2−4x−3y' = 5x^4 - 3x^2 - 4x - 3y′=5x4−3x2−4x−33. 最終的な答えy′=5x4−3x2−4x−3y' = 5x^4 - 3x^2 - 4x - 3y′=5x4−3x2−4x−3