$(\sqrt{5} - \sqrt{2})^3$ を計算せよ。代数学式の展開根号計算2025/7/171. 問題の内容(5−2)3(\sqrt{5} - \sqrt{2})^3(5−2)3 を計算せよ。2. 解き方の手順(5−2)3(\sqrt{5} - \sqrt{2})^3(5−2)3 を展開するために、 (a−b)3=a3−3a2b+3ab2−b3(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3(a−b)3=a3−3a2b+3ab2−b3 の公式を利用します。ここで a=5a = \sqrt{5}a=5、 b=2b = \sqrt{2}b=2 とします。(5)3=55(\sqrt{5})^3 = 5\sqrt{5}(5)3=55(2)3=22(\sqrt{2})^3 = 2\sqrt{2}(2)3=22(5)2=5(\sqrt{5})^2 = 5(5)2=5(2)2=2(\sqrt{2})^2 = 2(2)2=2(5−2)3=(5)3−3(5)2(2)+3(5)(2)2−(2)3(\sqrt{5} - \sqrt{2})^3 = (\sqrt{5})^3 - 3(\sqrt{5})^2(\sqrt{2}) + 3(\sqrt{5})(\sqrt{2})^2 - (\sqrt{2})^3(5−2)3=(5)3−3(5)2(2)+3(5)(2)2−(2)3=55−3(5)2+35(2)−22= 5\sqrt{5} - 3(5)\sqrt{2} + 3\sqrt{5}(2) - 2\sqrt{2}=55−3(5)2+35(2)−22=55−152+65−22= 5\sqrt{5} - 15\sqrt{2} + 6\sqrt{5} - 2\sqrt{2}=55−152+65−22=(55+65)+(−152−22)= (5\sqrt{5} + 6\sqrt{5}) + (-15\sqrt{2} - 2\sqrt{2})=(55+65)+(−152−22)=115−172= 11\sqrt{5} - 17\sqrt{2}=115−1723. 最終的な答え115−17211\sqrt{5} - 17\sqrt{2}115−172