長方形の画用紙があり、横は縦より2cm長い。この画用紙の四隅から一辺が3cmの正方形を切り取り、ふたのない箱を作ったところ、その容積が45cm³になった。 (1) もとの縦の長さを$x$ cmとするとき、横の長さを表しなさい。 (2) もとの画用紙の縦の長さを求めなさい。

代数学二次方程式文章問題体積因数分解長方形
2025/7/21

1. 問題の内容

長方形の画用紙があり、横は縦より2cm長い。この画用紙の四隅から一辺が3cmの正方形を切り取り、ふたのない箱を作ったところ、その容積が45cm³になった。
(1) もとの縦の長さをxx cmとするとき、横の長さを表しなさい。
(2) もとの画用紙の縦の長さを求めなさい。

2. 解き方の手順

(1) 横の長さは縦の長さより2cm長いので、縦の長さをxx cmとすると、横の長さは(x+2)(x+2) cmと表せる。
(2)
箱の底面の縦の長さは、もとの縦の長さから上下の3cmずつを切り取ったものなので、x33=x6x - 3 - 3 = x - 6 cm。
箱の底面の横の長さは、もとの横の長さから左右の3cmずつを切り取ったものなので、x+233=x4x + 2 - 3 - 3 = x - 4 cm。
箱の高さは3cm。
箱の容積は、(底面積)×(高さ) (底面積) \times (高さ) なので、
(x6)(x4)×3=45 (x-6)(x-4) \times 3 = 45
(x6)(x4)=15(x-6)(x-4) = 15
x210x+24=15x^2 - 10x + 24 = 15
x210x+9=0x^2 - 10x + 9 = 0
(x1)(x9)=0(x-1)(x-9) = 0
x=1,9x = 1, 9
x=1x=1 のとき、底面の縦の長さは16=51-6 = -5 となり、負の数になるので不適。
したがって、x=9x=9

3. 最終的な答え

(1) x+2x+2 cm
(2) 9 cm

「代数学」の関連問題

与えられた行列 $P = \begin{pmatrix} -4 & 0 & 1 \\ 5 & 1 & 3 \\ -3 & 0 & 2 \end{pmatrix}$ と $Q = \begin{pmat...

線形代数行列式行列
2025/7/23

次の2つの問題を解きます。ただし、$r > 0$、$-\pi < \alpha \leq \pi$とします。 (1) $\sin\theta - \cos\theta$ を $r\sin(\theta...

三角関数三角関数の合成加法定理
2025/7/23

与えられた数式の計算を行う問題です。数式は $(\sqrt{6}+2)(\sqrt{3}-\sqrt{2}) + \frac{12+2\sqrt{2}}{\sqrt{8}}$ です。

数式計算平方根有理化
2025/7/23

次の連立不等式を解きます。 $x^2 - 5x \leq 0$ $x^2 - 6x + 2 > 0$

不等式二次不等式連立不等式解の公式平方根
2025/7/23

与えられた連立方程式を解いて、$x$ と $y$ の値を求めます。 連立方程式は次の通りです。 $\begin{cases} 3x - 5y = 9 \\ 5x - y = 4 \end{cases}...

連立方程式加減法一次方程式
2025/7/23

与えられた数式 $(4 + \sqrt{3})(4 - \sqrt{3}) - 2(1 - \sqrt{3})$ を計算し、結果を求めます。

式の計算平方根有理化計算
2025/7/23

与えられた式 $(x-2)^2 - (x+3)(x-8)$ を展開し、整理して簡単にします。

式の展開因数分解多項式計算
2025/7/23

与えられた6つの計算問題を解く問題です。 (1) $8^{\frac{2}{3}} \times 4^{\frac{3}{2}}$ (2) $2^{-\frac{1}{2}} \times 2^{\f...

指数累乗根計算
2025/7/23

一次方程式 $2x - 5 = \frac{1}{4}x + 9$ を解く問題です。

一次方程式方程式の解法代数
2025/7/23

与えられた式 $(\sqrt{6} + 5)^2 - 5(\sqrt{6} + 5)$ を計算して簡単にする問題です。

式の計算展開平方根
2025/7/23