長方形の隣り合う2辺の長さの和が40cmで、面積が300cm²であるとき、この長方形の2辺の長さを求めよ。

代数学二次方程式長方形面積因数分解
2025/4/3

1. 問題の内容

長方形の隣り合う2辺の長さの和が40cmで、面積が300cm²であるとき、この長方形の2辺の長さを求めよ。

2. 解き方の手順

長方形の短い方の辺の長さをxx cmとおくと、長い方の辺の長さは(40x)(40-x) cmとなる。
長方形の面積は300300cm²なので、次の式が成り立つ。
x(40x)=300x(40-x) = 300
この式を展開して整理すると、
40xx2=30040x - x^2 = 300
x240x+300=0x^2 - 40x + 300 = 0
この2次方程式を解く。因数分解すると
(x10)(x30)=0(x-10)(x-30) = 0
よって、x=10x = 10またはx=30x = 30
x=10x = 10のとき、他の辺の長さは4010=3040-10 = 30 cm
x=30x = 30のとき、他の辺の長さは4030=1040-30 = 10 cm
どちらの場合も、長方形の2辺の長さは10 cmと30 cmとなる。

3. 最終的な答え

10 cmと30 cm

「代数学」の関連問題

初項 $a$, 公比 $r$, 項数 $n$ の等比数列の和 $S = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$ を求める問題です。

等比数列数列公式
2025/4/19

与えられた等比数列 $3, -6, 12, -24, \dots$ の初項から第$n$項までの和 $S_n$ を求める問題です。

等比数列数列の和等比数列の和の公式
2025/4/19

初項 $a$, 公比 $r$, 項数 $n$ の等比数列の和 $S = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$ を求める。

等比数列数列の和公式
2025/4/19

次の式を計算します。 $\frac{x^2 - 2x + 1}{x^2 - 2x} \times \frac{x-2}{x^2 + 3x + 2} \div \frac{x-1}{x^2 + x}$

式の計算因数分解分数式
2025/4/19

与えられた等比数列 $2, \frac{2}{3}, \frac{2}{3^2}, \frac{2}{3^3}, \dots$ の初項から第 $n$ 項までの和 $S_n$ を求めます。

等比数列数列の和級数
2025/4/19

$x = \frac{3-\sqrt{5}}{2}$ のとき、次の式の値を求めよ。 (1) $x + \frac{1}{x}$ (2) $x^2 + \frac{1}{x^2}$ (3) $x^2 -...

式の計算有理化代入分数式
2025/4/19

与えられた式 $-3x(x^2 + 8x - 5)$ を展開して整理しなさい。

展開多項式整理
2025/4/19

与えられた式 $2 - 3x(x^2 + 8x - 5)$ を展開し、整理せよ。

式の展開多項式整理
2025/4/19

与えられた式 $2x(x - 6)$ を展開し、整理せよ。

展開多項式分配法則
2025/4/19

与えられた式は、$x^2 + 4$ です。 この式を因数分解せよという問題だと推測されます。

因数分解複素数二次式虚数
2025/4/19