与えられた積分を計算します。 $\int \frac{x^4 - 2x^3 - 3x^2 + 13x + 6}{x^3 - x^2 - 8x + 12} dx$解析学積分有理関数の積分部分分数分解2025/7/221. 問題の内容与えられた積分を計算します。∫x4−2x3−3x2+13x+6x3−x2−8x+12dx\int \frac{x^4 - 2x^3 - 3x^2 + 13x + 6}{x^3 - x^2 - 8x + 12} dx∫x3−x2−8x+12x4−2x3−3x2+13x+6dx2. 解き方の手順まず、被積分関数の分子を分母で割ります。x4−2x3−3x2+13x+6x^4 - 2x^3 - 3x^2 + 13x + 6x4−2x3−3x2+13x+6をx3−x2−8x+12x^3 - x^2 - 8x + 12x3−x2−8x+12で割ると、商はx−1x-1x−1、余りは3x2+5x+183x^2 + 5x + 183x2+5x+18となります。したがって、x4−2x3−3x2+13x+6x3−x2−8x+12=x−1+3x2+5x+18x3−x2−8x+12\frac{x^4 - 2x^3 - 3x^2 + 13x + 6}{x^3 - x^2 - 8x + 12} = x - 1 + \frac{3x^2 + 5x + 18}{x^3 - x^2 - 8x + 12}x3−x2−8x+12x4−2x3−3x2+13x+6=x−1+x3−x2−8x+123x2+5x+18次に、分母を因数分解します。x3−x2−8x+12=(x−2)(x2+x−6)=(x−2)(x−2)(x+3)=(x−2)2(x+3)x^3 - x^2 - 8x + 12 = (x-2)(x^2+x-6) = (x-2)(x-2)(x+3) = (x-2)^2 (x+3)x3−x2−8x+12=(x−2)(x2+x−6)=(x−2)(x−2)(x+3)=(x−2)2(x+3)よって、3x2+5x+18(x−2)2(x+3)=Ax−2+B(x−2)2+Cx+3\frac{3x^2 + 5x + 18}{(x-2)^2 (x+3)} = \frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{C}{x+3}(x−2)2(x+3)3x2+5x+18=x−2A+(x−2)2B+x+3C両辺に(x−2)2(x+3)(x-2)^2 (x+3)(x−2)2(x+3)をかけると、3x2+5x+18=A(x−2)(x+3)+B(x+3)+C(x−2)23x^2 + 5x + 18 = A(x-2)(x+3) + B(x+3) + C(x-2)^23x2+5x+18=A(x−2)(x+3)+B(x+3)+C(x−2)23x2+5x+18=A(x2+x−6)+B(x+3)+C(x2−4x+4)3x^2 + 5x + 18 = A(x^2+x-6) + B(x+3) + C(x^2-4x+4)3x2+5x+18=A(x2+x−6)+B(x+3)+C(x2−4x+4)3x2+5x+18=(A+C)x2+(A+B−4C)x+(−6A+3B+4C)3x^2 + 5x + 18 = (A+C)x^2 + (A+B-4C)x + (-6A+3B+4C)3x2+5x+18=(A+C)x2+(A+B−4C)x+(−6A+3B+4C)係数を比較すると、A+C=3A+C = 3A+C=3A+B−4C=5A+B-4C = 5A+B−4C=5−6A+3B+4C=18-6A+3B+4C = 18−6A+3B+4C=18これらの連立方程式を解きます。A=3−CA = 3 - CA=3−C(3−C)+B−4C=5⇒B−5C=2⇒B=2+5C(3 - C) + B - 4C = 5 \Rightarrow B - 5C = 2 \Rightarrow B = 2 + 5C(3−C)+B−4C=5⇒B−5C=2⇒B=2+5C−6(3−C)+3(2+5C)+4C=18-6(3 - C) + 3(2 + 5C) + 4C = 18−6(3−C)+3(2+5C)+4C=18−18+6C+6+15C+4C=18-18 + 6C + 6 + 15C + 4C = 18−18+6C+6+15C+4C=1825C=3025C = 3025C=30C=65C = \frac{6}{5}C=56A=3−65=95A = 3 - \frac{6}{5} = \frac{9}{5}A=3−56=59B=2+5(65)=2+6=8B = 2 + 5(\frac{6}{5}) = 2 + 6 = 8B=2+5(56)=2+6=8したがって、3x2+5x+18(x−2)2(x+3)=9/5x−2+8(x−2)2+6/5x+3\frac{3x^2 + 5x + 18}{(x-2)^2 (x+3)} = \frac{9/5}{x-2} + \frac{8}{(x-2)^2} + \frac{6/5}{x+3}(x−2)2(x+3)3x2+5x+18=x−29/5+(x−2)28+x+36/5∫3x2+5x+18(x−2)2(x+3)dx=95∫1x−2dx+8∫1(x−2)2dx+65∫1x+3dx\int \frac{3x^2 + 5x + 18}{(x-2)^2 (x+3)} dx = \frac{9}{5} \int \frac{1}{x-2} dx + 8 \int \frac{1}{(x-2)^2} dx + \frac{6}{5} \int \frac{1}{x+3} dx∫(x−2)2(x+3)3x2+5x+18dx=59∫x−21dx+8∫(x−2)21dx+56∫x+31dx=95ln∣x−2∣−8x−2+65ln∣x+3∣+C= \frac{9}{5} \ln |x-2| - \frac{8}{x-2} + \frac{6}{5} \ln |x+3| + C=59ln∣x−2∣−x−28+56ln∣x+3∣+C∫(x−1)dx=x22−x+C\int (x - 1) dx = \frac{x^2}{2} - x + C∫(x−1)dx=2x2−x+C元の積分は、∫x4−2x3−3x2+13x+6x3−x2−8x+12dx=∫(x−1+3x2+5x+18x3−x2−8x+12)dx\int \frac{x^4 - 2x^3 - 3x^2 + 13x + 6}{x^3 - x^2 - 8x + 12} dx = \int (x - 1 + \frac{3x^2 + 5x + 18}{x^3 - x^2 - 8x + 12}) dx∫x3−x2−8x+12x4−2x3−3x2+13x+6dx=∫(x−1+x3−x2−8x+123x2+5x+18)dx=x22−x+95ln∣x−2∣−8x−2+65ln∣x+3∣+C= \frac{x^2}{2} - x + \frac{9}{5} \ln |x-2| - \frac{8}{x-2} + \frac{6}{5} \ln |x+3| + C=2x2−x+59ln∣x−2∣−x−28+56ln∣x+3∣+C3. 最終的な答えx22−x+95ln∣x−2∣−8x−2+65ln∣x+3∣+C\frac{x^2}{2} - x + \frac{9}{5} \ln |x-2| - \frac{8}{x-2} + \frac{6}{5} \ln |x+3| + C2x2−x+59ln∣x−2∣−x−28+56ln∣x+3∣+C