関数 $F(x) = \int_{\frac{\pi}{3}}^{x} (x - 3t)\cos t \, dt$ を微分せよ。

解析学微分積分積分の微分定積分関数の微分
2025/7/23

1. 問題の内容

関数 F(x)=π3x(x3t)costdtF(x) = \int_{\frac{\pi}{3}}^{x} (x - 3t)\cos t \, dt を微分せよ。

2. 解き方の手順

まず、F(x)F(x) を積分記号の外に出せるように変形します。
F(x)=π3xxcostdtπ3x3tcostdtF(x) = \int_{\frac{\pi}{3}}^{x} x\cos t \, dt - \int_{\frac{\pi}{3}}^{x} 3t\cos t \, dt
F(x)=xπ3xcostdt3π3xtcostdtF(x) = x \int_{\frac{\pi}{3}}^{x} \cos t \, dt - 3 \int_{\frac{\pi}{3}}^{x} t\cos t \, dt
次に、各項を微分します。
F(x)=ddx(xπ3xcostdt)3ddx(π3xtcostdt)F'(x) = \frac{d}{dx} \left( x \int_{\frac{\pi}{3}}^{x} \cos t \, dt \right) - 3 \frac{d}{dx} \left( \int_{\frac{\pi}{3}}^{x} t\cos t \, dt \right)
第一項を積の微分公式を用いて微分します。
ddx(xπ3xcostdt)=1π3xcostdt+xddx(π3xcostdt)\frac{d}{dx} \left( x \int_{\frac{\pi}{3}}^{x} \cos t \, dt \right) = 1 \cdot \int_{\frac{\pi}{3}}^{x} \cos t \, dt + x \cdot \frac{d}{dx} \left( \int_{\frac{\pi}{3}}^{x} \cos t \, dt \right)
=π3xcostdt+xcosx= \int_{\frac{\pi}{3}}^{x} \cos t \, dt + x \cos x
=[sint]π3x+xcosx= [\sin t]_{\frac{\pi}{3}}^{x} + x \cos x
=sinxsinπ3+xcosx= \sin x - \sin \frac{\pi}{3} + x \cos x
=sinx32+xcosx= \sin x - \frac{\sqrt{3}}{2} + x \cos x
第二項を微分の基本定理を用いて微分します。
ddx(π3xtcostdt)=xcosx\frac{d}{dx} \left( \int_{\frac{\pi}{3}}^{x} t\cos t \, dt \right) = x \cos x
したがって、
F(x)=sinx32+xcosx3(xcosx)F'(x) = \sin x - \frac{\sqrt{3}}{2} + x \cos x - 3(x \cos x)
F(x)=sinx322xcosxF'(x) = \sin x - \frac{\sqrt{3}}{2} - 2x \cos x

3. 最終的な答え

F(x)=sinx2xcosx32F'(x) = \sin x - 2x \cos x - \frac{\sqrt{3}}{2}

「解析学」の関連問題

与えられた関数 $y = \log \frac{x \sqrt{2x+1}}{(2x-1)^3}$ の導関数を求める問題です。

導関数対数関数微分
2025/7/23

次の3つの不定積分を求める問題です。 (1) $\int \frac{dx}{1 + \cos x + \sin x}$ (2) $\int \sin^3 x \cos^3 x dx$ (3) $\i...

不定積分三角関数置換積分半角の公式
2025/7/23

関数 $f(x) = x^{3x}$ ($x > 0$) を対数微分法を用いて微分せよ。

微分対数微分法逆関数三角関数
2025/7/23

次の極限値を計算する。 (1) $\lim_{n\to\infty} \frac{\pi}{n} \left( \sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \...

極限リーマン和積分部分積分定積分
2025/7/23

不定積分 $\int \frac{x^2}{x^2 - x - 6} dx$ を計算する問題です。

不定積分部分分数分解積分
2025/7/23

与えられた関数の2階導関数を求める問題です。 (1) $f(x) = \cos 3x$ (2) $g(x) = e^{-x^2 + 4}$

微分導関数2階導関数三角関数指数関数
2025/7/23

次の不定積分を求めます。 $\int \frac{x^2}{x^3 - x - 6} dx$

不定積分部分分数分解積分計算対数関数arctan
2025/7/23

与えられた6つの関数をそれぞれ微分する問題です。 (3) $\sqrt{x^2 - 5x + 8}$ (4) $\log(x^4 + x^2 + 2)$ (5) $\sin(2x^3 + 1)$ (6...

微分合成関数の微分対数関数三角関数指数関数
2025/7/23

与えられた4つの不定積分を計算します。 (1) $\int \frac{\sqrt{x}}{1+\sqrt{x}} dx$ (2) $\int \frac{1}{1+\sqrt{x^2+1}} dx$...

不定積分置換積分三角関数積分
2025/7/23

曲線 $y = 2e^x$ 上の点Pにおける接線が原点を通るとき、その接線の方程式を求める。

微分接線指数関数方程式
2025/7/23