次の不定積分を求めます。 $\int \frac{x^2}{x^3 - x - 6} dx$解析学不定積分部分分数分解積分計算対数関数arctan2025/7/231. 問題の内容次の不定積分を求めます。∫x2x3−x−6dx\int \frac{x^2}{x^3 - x - 6} dx∫x3−x−6x2dx2. 解き方の手順まず、分母 x3−x−6x^3 - x - 6x3−x−6 を因数分解します。x=2x=2x=2 を代入すると 23−2−6=8−2−6=02^3 - 2 - 6 = 8 - 2 - 6 = 023−2−6=8−2−6=0 なので、x−2x-2x−2 を因数に持ちます。組み立て除法を用いると、x3−x−6=(x−2)(x2+2x+3)x^3 - x - 6 = (x-2)(x^2 + 2x + 3)x3−x−6=(x−2)(x2+2x+3)したがって、積分は∫x2(x−2)(x2+2x+3)dx\int \frac{x^2}{(x-2)(x^2 + 2x + 3)} dx∫(x−2)(x2+2x+3)x2dxとなります。ここで、部分分数分解を考えます。x2(x−2)(x2+2x+3)=Ax−2+Bx+Cx2+2x+3\frac{x^2}{(x-2)(x^2+2x+3)} = \frac{A}{x-2} + \frac{Bx+C}{x^2+2x+3}(x−2)(x2+2x+3)x2=x−2A+x2+2x+3Bx+C両辺に (x−2)(x2+2x+3)(x-2)(x^2+2x+3)(x−2)(x2+2x+3) を掛けると、x2=A(x2+2x+3)+(Bx+C)(x−2)x^2 = A(x^2+2x+3) + (Bx+C)(x-2)x2=A(x2+2x+3)+(Bx+C)(x−2)x2=Ax2+2Ax+3A+Bx2−2Bx+Cx−2Cx^2 = Ax^2 + 2Ax + 3A + Bx^2 - 2Bx + Cx - 2Cx2=Ax2+2Ax+3A+Bx2−2Bx+Cx−2Cx2=(A+B)x2+(2A−2B+C)x+(3A−2C)x^2 = (A+B)x^2 + (2A-2B+C)x + (3A-2C)x2=(A+B)x2+(2A−2B+C)x+(3A−2C)係数を比較して、A+B=1A+B = 1A+B=12A−2B+C=02A-2B+C = 02A−2B+C=03A−2C=03A-2C = 03A−2C=03番目の式より 2C=3A2C = 3A2C=3A なので、C=32AC = \frac{3}{2}AC=23A1番目の式より B=1−AB = 1-AB=1−Aこれらを2番目の式に代入して、2A−2(1−A)+32A=02A - 2(1-A) + \frac{3}{2}A = 02A−2(1−A)+23A=02A−2+2A+32A=02A - 2 + 2A + \frac{3}{2}A = 02A−2+2A+23A=0112A=2\frac{11}{2}A = 2211A=2A=411A = \frac{4}{11}A=114したがって、B=1−411=711B = 1 - \frac{4}{11} = \frac{7}{11}B=1−114=117、 C=32⋅411=611C = \frac{3}{2} \cdot \frac{4}{11} = \frac{6}{11}C=23⋅114=116∫x2(x−2)(x2+2x+3)dx=∫(4/11x−2+(7/11)x+(6/11)x2+2x+3)dx\int \frac{x^2}{(x-2)(x^2+2x+3)} dx = \int \left( \frac{4/11}{x-2} + \frac{(7/11)x + (6/11)}{x^2+2x+3} \right) dx∫(x−2)(x2+2x+3)x2dx=∫(x−24/11+x2+2x+3(7/11)x+(6/11))dx=411∫1x−2dx+111∫7x+6x2+2x+3dx= \frac{4}{11} \int \frac{1}{x-2} dx + \frac{1}{11} \int \frac{7x+6}{x^2+2x+3} dx=114∫x−21dx+111∫x2+2x+37x+6dx=411ln∣x−2∣+111∫7x+6(x+1)2+2dx= \frac{4}{11} \ln|x-2| + \frac{1}{11} \int \frac{7x+6}{(x+1)^2+2} dx=114ln∣x−2∣+111∫(x+1)2+27x+6dxここで、7x+6=a(2x+2)+b7x+6 = a(2x+2) + b7x+6=a(2x+2)+b となるように a,ba, ba,b を定める。7x+6=7/2(2x+2)−17x+6 = 7/2(2x+2) -17x+6=7/2(2x+2)−1従って、∫7x+6(x+1)2+2dx=∫7/2(2x+2)−1(x+1)2+2dx=72∫2x+2(x+1)2+2dx−∫1(x+1)2+2dx\int \frac{7x+6}{(x+1)^2+2} dx = \int \frac{7/2(2x+2)-1}{(x+1)^2+2} dx = \frac{7}{2} \int \frac{2x+2}{(x+1)^2+2} dx - \int \frac{1}{(x+1)^2+2}dx∫(x+1)2+27x+6dx=∫(x+1)2+27/2(2x+2)−1dx=27∫(x+1)2+22x+2dx−∫(x+1)2+21dx=72ln(x2+2x+3)−12arctanx+12+C = \frac{7}{2}\ln(x^2+2x+3) - \frac{1}{\sqrt{2}}\arctan{\frac{x+1}{\sqrt{2}}} + C=27ln(x2+2x+3)−21arctan2x+1+Cゆえに∫x2x3−x−6dx=411ln∣x−2∣+722ln(x2+2x+3)−1112arctanx+12+C\int \frac{x^2}{x^3-x-6} dx = \frac{4}{11}\ln|x-2| + \frac{7}{22}\ln(x^2+2x+3) - \frac{1}{11\sqrt{2}}\arctan{\frac{x+1}{\sqrt{2}}} + C∫x3−x−6x2dx=114ln∣x−2∣+227ln(x2+2x+3)−1121arctan2x+1+C3. 最終的な答え411ln∣x−2∣+722ln(x2+2x+3)−1112arctanx+12+C\frac{4}{11}\ln|x-2| + \frac{7}{22}\ln(x^2+2x+3) - \frac{1}{11\sqrt{2}}\arctan{\frac{x+1}{\sqrt{2}}} + C114ln∣x−2∣+227ln(x2+2x+3)−1121arctan2x+1+C