与えられた関数 $y = \log \frac{x \sqrt{2x+1}}{(2x-1)^3}$ の導関数を求める問題です。解析学導関数対数関数微分2025/7/231. 問題の内容与えられた関数 y=logx2x+1(2x−1)3y = \log \frac{x \sqrt{2x+1}}{(2x-1)^3}y=log(2x−1)3x2x+1 の導関数を求める問題です。2. 解き方の手順まず、対数の性質を利用して関数を分解します。y=log(x2x+1(2x−1)3)y = \log \left( \frac{x \sqrt{2x+1}}{(2x-1)^3} \right)y=log((2x−1)3x2x+1)y=log(x2x+1)−log((2x−1)3)y = \log (x \sqrt{2x+1}) - \log ( (2x-1)^3 )y=log(x2x+1)−log((2x−1)3)y=logx+log2x+1−3log(2x−1)y = \log x + \log \sqrt{2x+1} - 3 \log (2x-1)y=logx+log2x+1−3log(2x−1)y=logx+log(2x+1)1/2−3log(2x−1)y = \log x + \log (2x+1)^{1/2} - 3 \log (2x-1)y=logx+log(2x+1)1/2−3log(2x−1)y=logx+12log(2x+1)−3log(2x−1)y = \log x + \frac{1}{2} \log (2x+1) - 3 \log (2x-1)y=logx+21log(2x+1)−3log(2x−1)次に、各項を xxx で微分します。dydx=ddx(logx)+12ddx(log(2x+1))−3ddx(log(2x−1))\frac{dy}{dx} = \frac{d}{dx} (\log x) + \frac{1}{2} \frac{d}{dx} (\log (2x+1)) - 3 \frac{d}{dx} (\log (2x-1))dxdy=dxd(logx)+21dxd(log(2x+1))−3dxd(log(2x−1))dydx=1x+12⋅12x+1⋅2−3⋅12x−1⋅2\frac{dy}{dx} = \frac{1}{x} + \frac{1}{2} \cdot \frac{1}{2x+1} \cdot 2 - 3 \cdot \frac{1}{2x-1} \cdot 2dxdy=x1+21⋅2x+11⋅2−3⋅2x−11⋅2dydx=1x+12x+1−62x−1\frac{dy}{dx} = \frac{1}{x} + \frac{1}{2x+1} - \frac{6}{2x-1}dxdy=x1+2x+11−2x−16最後に、通分して整理します。dydx=(2x+1)(2x−1)+x(2x−1)−6x(2x+1)x(2x+1)(2x−1)\frac{dy}{dx} = \frac{(2x+1)(2x-1) + x(2x-1) - 6x(2x+1)}{x(2x+1)(2x-1)}dxdy=x(2x+1)(2x−1)(2x+1)(2x−1)+x(2x−1)−6x(2x+1)dydx=4x2−1+2x2−x−12x2−6xx(4x2−1)\frac{dy}{dx} = \frac{4x^2 - 1 + 2x^2 - x - 12x^2 - 6x}{x(4x^2 - 1)}dxdy=x(4x2−1)4x2−1+2x2−x−12x2−6xdydx=−6x2−7x−1x(4x2−1)\frac{dy}{dx} = \frac{-6x^2 - 7x - 1}{x(4x^2 - 1)}dxdy=x(4x2−1)−6x2−7x−1dydx=−(6x2+7x+1)x(4x2−1)\frac{dy}{dx} = \frac{-(6x^2 + 7x + 1)}{x(4x^2 - 1)}dxdy=x(4x2−1)−(6x2+7x+1)dydx=−(6x+1)(x+1)x(2x−1)(2x+1)\frac{dy}{dx} = \frac{-(6x+1)(x+1)}{x(2x-1)(2x+1)}dxdy=x(2x−1)(2x+1)−(6x+1)(x+1)3. 最終的な答えdydx=−(6x+1)(x+1)x(2x−1)(2x+1)\frac{dy}{dx} = \frac{-(6x+1)(x+1)}{x(2x-1)(2x+1)}dxdy=x(2x−1)(2x+1)−(6x+1)(x+1)またはdydx=−6x2−7x−14x3−x\frac{dy}{dx} = \frac{-6x^2 -7x -1}{4x^3 - x}dxdy=4x3−x−6x2−7x−1