右の図のような道があり、AからBまで遠回りをしないで行く道順が全部で何通りあるかを求める問題です。

算数場合の数組み合わせ道順
2025/7/22

1. 問題の内容

右の図のような道があり、AからBまで遠回りをしないで行く道順が全部で何通りあるかを求める問題です。

2. 解き方の手順

AからBまで遠回りをしないで行くためには、常に右方向か下方向に進む必要があります。それぞれの交差点に、そこを通る場合の数を書き込んでいくことで、最終的にBにたどり着くまでの道順の総数を求めることができます。
まず、Aから右方向に進む交差点はそれぞれ1通りです。同様に、Aから下方向に進む交差点もそれぞれ1通りです。
次に、Aから右方向に1つ進んだ交差点から下に進む交差点には、左上からの1通りがそのまま引き継がれます。同様に、Aから下に1つ進んだ交差点から右に進む交差点には、上からの1通りがそのまま引き継がれます。
それ以外の交差点には、左から来る場合の数と上から来る場合の数を足し合わせた数が書き込まれます。
具体的な計算は以下の通りです。
- Aの右隣の交差点: 1通り
- Aの下隣の交差点: 1通り
- Aの右隣の交差点から下に進んだ交差点: 1通り + 1通り = 2通り
- Aの下隣の交差点から右に進んだ交差点: 1通り + 1通り = 2通り
- 右に2つ、下に1つの交差点: 2通り + 1通り = 3通り
- 右に1つ、下に2つの交差点: 2通り + 1通り = 3通り
- 右に2つ、下に2つの交差点: 3通り + 3通り = 6通り
よって、Bにたどり着くまでの道順は6通りです。

3. 最終的な答え

6通り

「算数」の関連問題

与えられた式 $(6 + \sqrt{2})(1 - \sqrt{2})$ を計算して、その結果を求める問題です。

式の計算平方根分配法則
2025/7/22

与えられた数式は $3 \div \sqrt{6} \times \sqrt{8}$ です。この式を計算し、答えを求めます。

計算平方根有理化
2025/7/22

右の図のような道があり、AからBまで遠回りをしないで行く道順は何通りあるかを求める問題です。

組み合わせ場合の数順列
2025/7/22

1, 1, 2, 2, 2, 2 の6個の数字すべてを使ってできる6桁の整数は全部で何個あるか。

順列組み合わせ場合の数重複順列
2025/7/22

箱の中に赤と白のボールが2:3の割合で入っている。白いボールを4個取り出したところ、残ったボールの赤と白の割合が4:5になった。箱に入っている赤いボールの個数を求めよ。

割合方程式
2025/7/22

ある地区の大人と子どもが2台のバスで旅行に出かけた。子どもの参加者の2/5にあたる12人は1台目のバスに乗った。参加した大人と子どもの人数の割合が4:5だったとき、参加した大人の人数を求める問題です。

割合比例文章問題
2025/7/22

1, 2, 3, 4, 5 の5つの数字を並べ替えて5桁の整数を作る。 (1) 異なる整数は全部で何通りできるか。 (2) そのうち末尾が2となるものは何通りか。 (3) 奇数となるものは何通りか。

順列組み合わせ場合の数
2025/7/22

直方体の展開図が与えられています。この展開図から組み立てられる直方体の体積を求める問題です。展開図から直方体の縦、横、高さの長さを読み取り、体積を計算します。

体積直方体展開図算術
2025/7/22

$\sqrt{2} - 3\sqrt{2}$ を計算しなさい。

平方根計算
2025/7/22

九九の計算結果のうち、十の位が1になるものを選び、それらの計算式に対応する文字を下の□に書き入れる問題です。

九九掛け算計算算数
2025/7/22