次の定積分の値を求める問題です。 $\int_{2}^{2} (6x^2 - 4x) dx + \int_{1}^{2} (6x^2 - 4x) dx$

解析学定積分積分不定積分計算
2025/4/4

1. 問題の内容

次の定積分の値を求める問題です。
22(6x24x)dx+12(6x24x)dx\int_{2}^{2} (6x^2 - 4x) dx + \int_{1}^{2} (6x^2 - 4x) dx

2. 解き方の手順

まず、一つ目の積分 22(6x24x)dx\int_{2}^{2} (6x^2 - 4x) dx は、積分区間の上端と下端が等しいので、積分の値は0になります。
次に、二つ目の積分 12(6x24x)dx\int_{1}^{2} (6x^2 - 4x) dx を計算します。
まず、被積分関数 6x24x6x^2 - 4x の不定積分を求めます。
(6x24x)dx=6x2dx4xdx=6x334x22+C=2x32x2+C\int (6x^2 - 4x) dx = 6 \int x^2 dx - 4 \int x dx = 6 \cdot \frac{x^3}{3} - 4 \cdot \frac{x^2}{2} + C = 2x^3 - 2x^2 + C
ここで、CC は積分定数です。
したがって、定積分は次のようになります。
12(6x24x)dx=[2x32x2]12=(2(23)2(22))(2(13)2(12))=(2(8)2(4))(2(1)2(1))=(168)(22)=80=8\int_{1}^{2} (6x^2 - 4x) dx = [2x^3 - 2x^2]_{1}^{2} = (2(2^3) - 2(2^2)) - (2(1^3) - 2(1^2)) = (2(8) - 2(4)) - (2(1) - 2(1)) = (16 - 8) - (2 - 2) = 8 - 0 = 8
したがって、与えられた定積分の値は、0 + 8 = 8 となります。

3. 最終的な答え

8

「解析学」の関連問題

関数 $f(x) = x^2 + ax + b$ が与えられている。任意の1次式 $g(x)$ に対して $\int_{-1}^{1} f(x)g(x) \, dx = 0$ が常に成り立つように、定...

積分定積分関数多項式
2025/4/16

関数 $f(x) = x^2 + ax + b$ が与えられています。任意の1次式 $g(x)$ に対して、積分 $\int_{-1}^1 f(x)g(x)dx = 0$ が常に成り立つように、定数 ...

積分関数多項式定積分
2025/4/16

放物線 $y = x^2 - 2\sqrt{2}x + 4$ 上の点 $R(a, b)$ ($a > \sqrt{2}$) における接線と直線 $x=a$ のなす角を $\theta$ ($0 < \...

接線微分定点放物線
2025/4/16

放物線 $y = x^2 - 2\sqrt{2}x + 4$ 上の点 $R(a, b)$ ($a > \sqrt{2}$) における接線と直線 $x = a$ のなす角を $\theta$ ($0 <...

微分接線三角関数定点
2025/4/16

問題は、ベクトル関数 $A(t)$, $B(t)$ とスカラー関数 $k(t)$ に関して、次の2つの関係式が成り立つことを示すことです。 (7) $\frac{d}{dt}(kA) = \frac{...

ベクトル解析微分内積幾何学的解釈
2025/4/16

自然対数 $\ln(54027176)$ を計算する問題です。

自然対数対数
2025/4/16

$\sin \theta = \frac{3}{5}$ のとき、$\cos 2\theta$ の値を求めよ。

三角関数倍角の公式sincos
2025/4/16

与えられた関数 $f(x)$ の式は以下の2つです。 (a) $f(x) = 3x^2 + 2x + 4$ (b) $f(x) = 3\sqrt{x}$ この問題では、与えられた関数について特に何をす...

微分関数の微分多項式平方根
2025/4/16

次の5つの極限を求める問題です。 (1) $\lim_{x\to 1} \frac{x^2+2x-3}{x^3-5x^2+4}$ (2) $\lim_{x\to -2} \frac{\sqrt{x+6...

極限有理化三角関数因数分解
2025/4/16

与えられた5つの関数を微分する問題です。

微分関数の微分合成関数の微分三角関数対数関数
2025/4/16