$\int_0^{\pi} \cos(x-\frac{\pi}{2}) dx$ を計算します。解析学積分三角関数定積分2025/7/231. 問題の内容∫0πcos(x−π2)dx\int_0^{\pi} \cos(x-\frac{\pi}{2}) dx∫0πcos(x−2π)dx を計算します。2. 解き方の手順まず、cos(x−π2)\cos(x - \frac{\pi}{2})cos(x−2π) を三角関数の加法定理を用いて展開します。cos(x−π2)=cos(x)cos(π2)+sin(x)sin(π2)\cos(x - \frac{\pi}{2}) = \cos(x)\cos(\frac{\pi}{2}) + \sin(x)\sin(\frac{\pi}{2})cos(x−2π)=cos(x)cos(2π)+sin(x)sin(2π)cos(π2)=0\cos(\frac{\pi}{2}) = 0cos(2π)=0 と sin(π2)=1\sin(\frac{\pi}{2}) = 1sin(2π)=1 であるから、cos(x−π2)=cos(x)⋅0+sin(x)⋅1=sin(x)\cos(x - \frac{\pi}{2}) = \cos(x) \cdot 0 + \sin(x) \cdot 1 = \sin(x)cos(x−2π)=cos(x)⋅0+sin(x)⋅1=sin(x)したがって、積分は次のようになります。∫0πcos(x−π2)dx=∫0πsin(x)dx\int_0^{\pi} \cos(x - \frac{\pi}{2}) dx = \int_0^{\pi} \sin(x) dx∫0πcos(x−2π)dx=∫0πsin(x)dxsin(x)\sin(x)sin(x) の不定積分は −cos(x)-\cos(x)−cos(x) です。したがって、定積分は次のようになります。∫0πsin(x)dx=[−cos(x)]0π=−cos(π)−(−cos(0))=−cos(π)+cos(0)\int_0^{\pi} \sin(x) dx = [-\cos(x)]_0^{\pi} = -\cos(\pi) - (-\cos(0)) = -\cos(\pi) + \cos(0)∫0πsin(x)dx=[−cos(x)]0π=−cos(π)−(−cos(0))=−cos(π)+cos(0)cos(π)=−1\cos(\pi) = -1cos(π)=−1 と cos(0)=1\cos(0) = 1cos(0)=1 であるから、−cos(π)+cos(0)=−(−1)+1=1+1=2-\cos(\pi) + \cos(0) = -(-1) + 1 = 1 + 1 = 2−cos(π)+cos(0)=−(−1)+1=1+1=23. 最終的な答え2