与えられた12個の関数をそれぞれ積分する。解析学積分定積分置換積分三角関数指数関数対数関数2025/7/251. 問題の内容与えられた12個の関数をそれぞれ積分する。2. 解き方の手順(1) (x−3)(2x−1)=2x2−7x+3(x-3)(2x-1) = 2x^2 - 7x + 3(x−3)(2x−1)=2x2−7x+3∫(2x2−7x+3)dx=23x3−72x2+3x+C\int (2x^2 - 7x + 3) dx = \frac{2}{3}x^3 - \frac{7}{2}x^2 + 3x + C∫(2x2−7x+3)dx=32x3−27x2+3x+C(2) (x+1x)2=x2+2+1x2(x + \frac{1}{x})^2 = x^2 + 2 + \frac{1}{x^2}(x+x1)2=x2+2+x21∫(x2+2+1x2)dx=13x3+2x−1x+C\int (x^2 + 2 + \frac{1}{x^2}) dx = \frac{1}{3}x^3 + 2x - \frac{1}{x} + C∫(x2+2+x21)dx=31x3+2x−x1+C(3) (x−1)x−2x2\frac{(x-1)\sqrt{x}-2}{x^2}x2(x−1)x−2この関数は積分が難しい。まず、積分記号内に現れるx\sqrt{x}xをtttと置換して、x=t2x=t^2x=t2なので、dx=2tdtdx = 2t dtdx=2tdt。すると、積分は次のようになります。∫(t2−1)t−2t42tdt=2∫t3−t−2t3dt=2∫(1−1t2−2t3)dt=2(t+1t+1t2)+C=2x+2x+1x+C\int \frac{(t^2-1)t-2}{t^4} 2t dt = 2 \int \frac{t^3 - t - 2}{t^3} dt = 2 \int (1 - \frac{1}{t^2} - \frac{2}{t^3}) dt = 2(t + \frac{1}{t} + \frac{1}{t^2}) + C = 2\sqrt{x} + \frac{2}{\sqrt{x}} + \frac{1}{x} + C∫t4(t2−1)t−22tdt=2∫t3t3−t−2dt=2∫(1−t21−t32)dt=2(t+t1+t21)+C=2x+x2+x1+C.(4) (ex+e−x)2=e2x+2+e−2x(e^x + e^{-x})^2 = e^{2x} + 2 + e^{-2x}(ex+e−x)2=e2x+2+e−2x∫(e2x+2+e−2x)dx=12e2x+2x−12e−2x+C\int (e^{2x} + 2 + e^{-2x}) dx = \frac{1}{2}e^{2x} + 2x - \frac{1}{2}e^{-2x} + C∫(e2x+2+e−2x)dx=21e2x+2x−21e−2x+C(5) 2x+1+3x+1=2⋅2x+3⋅3x2^{x+1} + 3^{x+1} = 2 \cdot 2^x + 3 \cdot 3^x2x+1+3x+1=2⋅2x+3⋅3x∫(2⋅2x+3⋅3x)dx=2ln22x+3ln33x+C\int (2 \cdot 2^x + 3 \cdot 3^x) dx = \frac{2}{\ln 2} 2^x + \frac{3}{\ln 3} 3^x + C∫(2⋅2x+3⋅3x)dx=ln222x+ln333x+C(6) 1cos2xsin2x=sin2x+cos2xcos2xsin2x=1cos2x+1sin2x=sec2x+csc2x\frac{1}{\cos^2 x \sin^2 x} = \frac{\sin^2 x + \cos^2 x}{\cos^2 x \sin^2 x} = \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x} = \sec^2 x + \csc^2 xcos2xsin2x1=cos2xsin2xsin2x+cos2x=cos2x1+sin2x1=sec2x+csc2x∫(sec2x+csc2x)dx=tanx−cotx+C\int (\sec^2 x + \csc^2 x) dx = \tan x - \cot x + C∫(sec2x+csc2x)dx=tanx−cotx+C(7) cos2x2\frac{\cos^2 x}{2}2cos2x∫cos2x2dx=12∫cos2xdx=12∫1+cos2x2dx=14∫(1+cos2x)dx=14(x+12sin2x)+C=14x+18sin2x+C\int \frac{\cos^2 x}{2} dx = \frac{1}{2} \int \cos^2 x dx = \frac{1}{2} \int \frac{1 + \cos 2x}{2} dx = \frac{1}{4} \int (1 + \cos 2x) dx = \frac{1}{4} (x + \frac{1}{2} \sin 2x) + C = \frac{1}{4}x + \frac{1}{8} \sin 2x + C∫2cos2xdx=21∫cos2xdx=21∫21+cos2xdx=41∫(1+cos2x)dx=41(x+21sin2x)+C=41x+81sin2x+C(8) sin3x=sinx(1−cos2x)=sinx−sinxcos2x\sin^3 x = \sin x (1 - \cos^2 x) = \sin x - \sin x \cos^2 xsin3x=sinx(1−cos2x)=sinx−sinxcos2x∫sin3xdx=∫(sinx−sinxcos2x)dx=−cosx+13cos3x+C\int \sin^3 x dx = \int (\sin x - \sin x \cos^2 x) dx = -\cos x + \frac{1}{3} \cos^3 x + C∫sin3xdx=∫(sinx−sinxcos2x)dx=−cosx+31cos3x+C(9) sinxcos2x=sinx(cos2x−sin2x)=sinxcos2x−sin3x=sinxcos2x−sinx(1−cos2x)=2sinxcos2x−sinx\sin x \cos 2x = \sin x (\cos^2 x - \sin^2 x) = \sin x \cos^2 x - \sin^3 x = \sin x \cos^2 x - \sin x (1 - \cos^2 x) = 2 \sin x \cos^2 x - \sin xsinxcos2x=sinx(cos2x−sin2x)=sinxcos2x−sin3x=sinxcos2x−sinx(1−cos2x)=2sinxcos2x−sinx∫(sinxcos2x)dx=∫(2sinxcos2x−sinx)dx=−23cos3x+cosx+C\int (\sin x \cos 2x) dx = \int (2 \sin x \cos^2 x - \sin x) dx = -\frac{2}{3} \cos^3 x + \cos x + C∫(sinxcos2x)dx=∫(2sinxcos2x−sinx)dx=−32cos3x+cosx+C(10) 1tan2x=cot2x=csc2x−1\frac{1}{\tan^2 x} = \cot^2 x = \csc^2 x - 1tan2x1=cot2x=csc2x−1∫cot2xdx=∫(csc2x−1)dx=−cotx−x+C\int \cot^2 x dx = \int (\csc^2 x - 1) dx = -\cot x - x + C∫cot2xdx=∫(csc2x−1)dx=−cotx−x+C(11) x+x2−1x−x2−1=(x+x2−1)2x2−(x2−1)=x2+2xx2−1+x2−1=2x2−1+2xx2−1\frac{x + \sqrt{x^2 - 1}}{x - \sqrt{x^2 - 1}} = \frac{(x + \sqrt{x^2 - 1})^2}{x^2 - (x^2 - 1)} = x^2 + 2x \sqrt{x^2 - 1} + x^2 - 1 = 2x^2 - 1 + 2x \sqrt{x^2 - 1}x−x2−1x+x2−1=x2−(x2−1)(x+x2−1)2=x2+2xx2−1+x2−1=2x2−1+2xx2−1∫x+x2−1x−x2−1dx=∫(2x2−1+2xx2−1)dx=23x3−x+23(x2−1)3/2+C\int \frac{x + \sqrt{x^2 - 1}}{x - \sqrt{x^2 - 1}} dx = \int (2x^2 - 1 + 2x \sqrt{x^2 - 1}) dx = \frac{2}{3}x^3 - x + \frac{2}{3}(x^2 - 1)^{3/2} + C∫x−x2−1x+x2−1dx=∫(2x2−1+2xx2−1)dx=32x3−x+32(x2−1)3/2+C(12) 1+x2+1−x21−x4\frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 - x^4}}1−x41+x2+1−x2∫1+x2+1−x21−x4dx=∫1+x2+1−x2(1−x2)(1+x2)dx=∫1+x2(1−x2)(1+x2)dx+∫1−x2(1−x2)(1+x2)dx=∫11−x2dx+∫11+x2dx=arcsinx+arcsinh x+C=arcsinx+ln(x+x2+1)+C\int \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 - x^4}} dx = \int \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{(1 - x^2)(1 + x^2)}} dx = \int \frac{\sqrt{1 + x^2}}{\sqrt{(1 - x^2)(1 + x^2)}} dx + \int \frac{\sqrt{1 - x^2}}{\sqrt{(1 - x^2)(1 + x^2)}} dx = \int \frac{1}{\sqrt{1 - x^2}} dx + \int \frac{1}{\sqrt{1 + x^2}} dx = \arcsin x + \text{arcsinh } x + C = \arcsin x + \ln(x + \sqrt{x^2 + 1}) + C∫1−x41+x2+1−x2dx=∫(1−x2)(1+x2)1+x2+1−x2dx=∫(1−x2)(1+x2)1+x2dx+∫(1−x2)(1+x2)1−x2dx=∫1−x21dx+∫1+x21dx=arcsinx+arcsinh x+C=arcsinx+ln(x+x2+1)+C3. 最終的な答え(1) 23x3−72x2+3x+C\frac{2}{3}x^3 - \frac{7}{2}x^2 + 3x + C32x3−27x2+3x+C(2) 13x3+2x−1x+C\frac{1}{3}x^3 + 2x - \frac{1}{x} + C31x3+2x−x1+C(3) 2x+2x+1x+C2\sqrt{x} + \frac{2}{\sqrt{x}} + \frac{1}{x} + C2x+x2+x1+C(4) 12e2x+2x−12e−2x+C\frac{1}{2}e^{2x} + 2x - \frac{1}{2}e^{-2x} + C21e2x+2x−21e−2x+C(5) 2ln22x+3ln33x+C\frac{2}{\ln 2} 2^x + \frac{3}{\ln 3} 3^x + Cln222x+ln333x+C(6) tanx−cotx+C\tan x - \cot x + Ctanx−cotx+C(7) 14x+18sin2x+C\frac{1}{4}x + \frac{1}{8} \sin 2x + C41x+81sin2x+C(8) −cosx+13cos3x+C-\cos x + \frac{1}{3} \cos^3 x + C−cosx+31cos3x+C(9) −23cos3x+cosx+C-\frac{2}{3} \cos^3 x + \cos x + C−32cos3x+cosx+C(10) −cotx−x+C-\cot x - x + C−cotx−x+C(11) 23x3−x+23(x2−1)3/2+C\frac{2}{3}x^3 - x + \frac{2}{3}(x^2 - 1)^{3/2} + C32x3−x+32(x2−1)3/2+C(12) arcsinx+ln(x+x2+1)+C\arcsin x + \ln(x + \sqrt{x^2 + 1}) + Carcsinx+ln(x+x2+1)+C