関数 $y = (x^3 + 2x)(x^2 + x + 2)(3x + 1)$ を微分して、$dy/dx$ を求める。解析学微分積の微分多項式2025/7/251. 問題の内容関数 y=(x3+2x)(x2+x+2)(3x+1)y = (x^3 + 2x)(x^2 + x + 2)(3x + 1)y=(x3+2x)(x2+x+2)(3x+1) を微分して、dy/dxdy/dxdy/dx を求める。2. 解き方の手順積の微分公式を用いる。3つの関数 u(x)u(x)u(x), v(x)v(x)v(x), w(x)w(x)w(x) の積の微分は次のようになる。ddx[u(x)v(x)w(x)]=dudxv(x)w(x)+u(x)dvdxw(x)+u(x)v(x)dwdx\frac{d}{dx}[u(x)v(x)w(x)] = \frac{du}{dx}v(x)w(x) + u(x)\frac{dv}{dx}w(x) + u(x)v(x)\frac{dw}{dx}dxd[u(x)v(x)w(x)]=dxduv(x)w(x)+u(x)dxdvw(x)+u(x)v(x)dxdwここで、u(x)=x3+2xu(x) = x^3 + 2xu(x)=x3+2xv(x)=x2+x+2v(x) = x^2 + x + 2v(x)=x2+x+2w(x)=3x+1w(x) = 3x + 1w(x)=3x+1とすると、それぞれの微分は、dudx=3x2+2\frac{du}{dx} = 3x^2 + 2dxdu=3x2+2dvdx=2x+1\frac{dv}{dx} = 2x + 1dxdv=2x+1dwdx=3\frac{dw}{dx} = 3dxdw=3よって、dy/dxdy/dxdy/dx は、dydx=(3x2+2)(x2+x+2)(3x+1)+(x3+2x)(2x+1)(3x+1)+(x3+2x)(x2+x+2)(3)\frac{dy}{dx} = (3x^2 + 2)(x^2 + x + 2)(3x + 1) + (x^3 + 2x)(2x + 1)(3x + 1) + (x^3 + 2x)(x^2 + x + 2)(3)dxdy=(3x2+2)(x2+x+2)(3x+1)+(x3+2x)(2x+1)(3x+1)+(x3+2x)(x2+x+2)(3)これを展開して整理する。dydx=(3x2+2)(3x3+4x2+7x+2)+(x3+2x)(6x2+5x+1)+(x3+2x)(3x2+3x+6)\frac{dy}{dx} = (3x^2 + 2)(3x^3 + 4x^2 + 7x + 2) + (x^3 + 2x)(6x^2 + 5x + 1) + (x^3 + 2x)(3x^2 + 3x + 6)dxdy=(3x2+2)(3x3+4x2+7x+2)+(x3+2x)(6x2+5x+1)+(x3+2x)(3x2+3x+6)dydx=(9x5+12x4+21x3+6x2+6x3+8x2+14x+4)+(6x5+5x4+x3+12x3+10x2+2x)+(3x5+3x4+6x3+6x3+6x2+12x)\frac{dy}{dx} = (9x^5 + 12x^4 + 21x^3 + 6x^2 + 6x^3 + 8x^2 + 14x + 4) + (6x^5 + 5x^4 + x^3 + 12x^3 + 10x^2 + 2x) + (3x^5 + 3x^4 + 6x^3 + 6x^3 + 6x^2 + 12x)dxdy=(9x5+12x4+21x3+6x2+6x3+8x2+14x+4)+(6x5+5x4+x3+12x3+10x2+2x)+(3x5+3x4+6x3+6x3+6x2+12x)dydx=9x5+12x4+27x3+14x2+14x+4+6x5+5x4+13x3+10x2+2x+3x5+3x4+12x3+6x2+12x\frac{dy}{dx} = 9x^5 + 12x^4 + 27x^3 + 14x^2 + 14x + 4 + 6x^5 + 5x^4 + 13x^3 + 10x^2 + 2x + 3x^5 + 3x^4 + 12x^3 + 6x^2 + 12xdxdy=9x5+12x4+27x3+14x2+14x+4+6x5+5x4+13x3+10x2+2x+3x5+3x4+12x3+6x2+12xdydx=(9+6+3)x5+(12+5+3)x4+(27+13+12)x3+(14+10+6)x2+(14+2+12)x+4\frac{dy}{dx} = (9 + 6 + 3)x^5 + (12 + 5 + 3)x^4 + (27 + 13 + 12)x^3 + (14 + 10 + 6)x^2 + (14 + 2 + 12)x + 4dxdy=(9+6+3)x5+(12+5+3)x4+(27+13+12)x3+(14+10+6)x2+(14+2+12)x+4dydx=18x5+20x4+52x3+30x2+28x+4\frac{dy}{dx} = 18x^5 + 20x^4 + 52x^3 + 30x^2 + 28x + 4dxdy=18x5+20x4+52x3+30x2+28x+43. 最終的な答えdydx=18x5+20x4+52x3+30x2+28x+4\frac{dy}{dx} = 18x^5 + 20x^4 + 52x^3 + 30x^2 + 28x + 4dxdy=18x5+20x4+52x3+30x2+28x+4