問題文は、アからウの図形(ア:正三角形、イ:平行四辺形、ウ:正方形)について、以下の2つの問いに答えるものです。 (1) 線対称な図形を全て選び、記号で答える。 (2) 点対称な図形を全て選び、記号で答える。

幾何学図形線対称点対称正三角形平行四辺形正方形
2025/7/26

1. 問題の内容

問題文は、アからウの図形(ア:正三角形、イ:平行四辺形、ウ:正方形)について、以下の2つの問いに答えるものです。
(1) 線対称な図形を全て選び、記号で答える。
(2) 点対称な図形を全て選び、記号で答える。

2. 解き方の手順

(1) 線対称な図形
線対称な図形とは、ある直線を折り目として折り返したとき、図形がぴったり重なる図形のことです。
* 正三角形:1つの頂点から対辺の中点に向かって引いた直線で折り返すと重なる。3本の対称軸を持つ。
* 平行四辺形:一般的には線対称ではない。
* 正方形:対角線や、対辺の中点を結ぶ線で折り返すと重なる。4本の対称軸を持つ。
よって、線対称な図形は、正三角形と正方形です。
(2) 点対称な図形
点対称な図形とは、ある点を中心として180度回転させたとき、元の図形とぴったり重なる図形のことです。
* 正三角形:点対称ではない。
* 平行四辺形:対角線の交点を中心として180度回転させると重なる。
* 正方形:対角線の交点を中心として180度回転させると重なる。
よって、点対称な図形は、平行四辺形と正方形です。

3. 最終的な答え

(1) 線対称な図形:ア、ウ
(2) 点対称な図形:イ、ウ

「幾何学」の関連問題

三角形ABCにおいて、$AB = \sqrt{6}$、$\angle BAC = 75^\circ$、$\angle ABC = 45^\circ$である。点Aから直線BCに下ろした垂線の足をHとする...

三角形正弦定理垂線外接円角度辺の長さ
2025/7/26

三角形 $ABC$ があり、$AB = \sqrt{6}$, $\angle BAC = 75^\circ$, $\angle ABC = 45^\circ$ である。点 $A$ を通り直線 $BC$...

三角形角度正弦定理外接円方べきの定理
2025/7/26

三角形ABCにおいて、$AB = \sqrt{6}$, $\angle BAC = 75^\circ$, $\angle ABC = 45^\circ$である。点Aから直線BCに下ろした垂線の足をHと...

三角形正弦定理外接円垂線角度辺の長さ
2025/7/26

空間内に点O(0,0,0), A(1,-1,2), B(1,1,2), C(-1,2,0)がある。点Oから3点A, B, Cを含む平面に下ろした垂線の足Hの座標を求める。

空間ベクトル平面の方程式法線ベクトル垂線ベクトルの外積
2025/7/26

与えられた極方程式 $r = 6\cos\theta$ のグラフを描く問題です。また、与えられた極方程式 $r = \theta$ のグラフを、$0 \leq \theta \leq 4\pi$ の範...

極方程式グラフアルキメデスの螺旋
2025/7/26

三角形ABCにおいて、AB = $\sqrt{6}$, ∠BAC = 75°, ∠ABC = 45°である。点Aから直線BCに下ろした垂線の足をHとする。三角形ACHの外接円と直線ABの交点のうち、A...

三角形正弦定理垂線角度方べきの定理
2025/7/26

三角形ABCにおいて、$AB = \sqrt{6}$、$\angle BAC = 75^\circ$、$\angle ABC = 45^\circ$である。点Aから直線BCに垂直な直線と直線BCとの交...

三角形角度外接円三角比
2025/7/26

ベクトル $\mathbf{a} = (3, -4)$ に垂直な単位ベクトル $\mathbf{v}$ を求める問題です。

ベクトル垂直単位ベクトルベクトルの演算
2025/7/26

半径2の円O上に、$AB = 1$を満たす2点A, Bをとる。点Aにおける円Oの接線を$l$とする。点Bを通り$l$に垂直な直線と$l$との交点をHとするとき、$AH$の長さを求める。

接線三平方の定理三角比
2025/7/26

半径2の円O上に、AB=1を満たす2点A, Bをとる。点Aにおいて円Oと接する直線をlとする。点Bを通りlに垂直な直線とlとの交点をHとするとき、AHの長さを求める問題。選択肢は、ア. 1/4, イ....

接線三角比余弦定理角度
2025/7/26