与えられた8個の関数に対して、n次導関数 ($n \geq 1$)を求める。解析学導関数微分n次導関数Leibnizの公式2025/7/271. 問題の内容与えられた8個の関数に対して、n次導関数 (n≥1n \geq 1n≥1)を求める。2. 解き方の手順各関数のn次導関数を計算する。(1) y=11+x=(1+x)−1y = \frac{1}{1+x} = (1+x)^{-1}y=1+x1=(1+x)−1y′=−1(1+x)−2y' = -1(1+x)^{-2}y′=−1(1+x)−2y′′=(−1)(−2)(1+x)−3y'' = (-1)(-2)(1+x)^{-3}y′′=(−1)(−2)(1+x)−3y′′′=(−1)(−2)(−3)(1+x)−4y''' = (-1)(-2)(-3)(1+x)^{-4}y′′′=(−1)(−2)(−3)(1+x)−4一般に、y(n)=(−1)nn!(1+x)−(n+1)=(−1)nn!(1+x)n+1y^{(n)} = (-1)^n n! (1+x)^{-(n+1)} = \frac{(-1)^n n!}{(1+x)^{n+1}}y(n)=(−1)nn!(1+x)−(n+1)=(1+x)n+1(−1)nn!(2) y=log(1−x)y = \log(1-x)y=log(1−x)y′=−11−x=−(1−x)−1y' = \frac{-1}{1-x} = -(1-x)^{-1}y′=1−x−1=−(1−x)−1y′′=−(−1)(−1)(1−x)−2=−(1−x)−2y'' = -(-1)(-1)(1-x)^{-2} = -(1-x)^{-2}y′′=−(−1)(−1)(1−x)−2=−(1−x)−2y′′′=−(−2)(−1)(1−x)−3=−2(1−x)−3y''' = -(-2)(-1)(1-x)^{-3} = -2(1-x)^{-3}y′′′=−(−2)(−1)(1−x)−3=−2(1−x)−3y(n)=−(n−1)!(1−x)−n=−(n−1)!(1−x)ny^{(n)} = -(n-1)!(1-x)^{-n} = -\frac{(n-1)!}{(1-x)^n}y(n)=−(n−1)!(1−x)−n=−(1−x)n(n−1)!(3) y=(1+x)ay = (1+x)^ay=(1+x)ay′=a(1+x)a−1y' = a(1+x)^{a-1}y′=a(1+x)a−1y′′=a(a−1)(1+x)a−2y'' = a(a-1)(1+x)^{a-2}y′′=a(a−1)(1+x)a−2y′′′=a(a−1)(a−2)(1+x)a−3y''' = a(a-1)(a-2)(1+x)^{a-3}y′′′=a(a−1)(a−2)(1+x)a−3y(n)=a(a−1)(a−2)...(a−n+1)(1+x)a−ny^{(n)} = a(a-1)(a-2)...(a-n+1)(1+x)^{a-n}y(n)=a(a−1)(a−2)...(a−n+1)(1+x)a−n(4) y=x2e2xy = x^2 e^{2x}y=x2e2xy′=2xe2x+2x2e2x=(2x2+2x)e2xy' = 2xe^{2x} + 2x^2 e^{2x} = (2x^2+2x)e^{2x}y′=2xe2x+2x2e2x=(2x2+2x)e2xy′′=(4x+2)e2x+2(2x2+2x)e2x=(4x2+8x+2)e2xy'' = (4x+2)e^{2x} + 2(2x^2+2x)e^{2x} = (4x^2+8x+2)e^{2x}y′′=(4x+2)e2x+2(2x2+2x)e2x=(4x2+8x+2)e2xy(n)=[2nx2+4n2n−1x+n(n−1)2n−2]e2xy^{(n)} = [2^n x^2 + 4n2^{n-1} x + n(n-1)2^{n-2}] e^{2x}y(n)=[2nx2+4n2n−1x+n(n−1)2n−2]e2x(5) y=3x(x2+x)y = 3^x (x^2 + x)y=3x(x2+x)y=exln3(x2+x)y = e^{x \ln 3}(x^2 + x)y=exln3(x2+x)y′=exln3ln3(x2+x)+exln3(2x+1)y' = e^{x \ln 3} \ln 3 (x^2+x) + e^{x \ln 3} (2x+1)y′=exln3ln3(x2+x)+exln3(2x+1)y(n)=∑k=0n(nk)(3x)(k)(x2+x)(n−k)y^{(n)} = \sum_{k=0}^n \binom{n}{k} (3^x)^{(k)} (x^2+x)^{(n-k)}y(n)=∑k=0n(kn)(3x)(k)(x2+x)(n−k)y(n)=∑k=0n(nk)(ln3)k3x(x2+x)(n−k)y^{(n)} = \sum_{k=0}^n \binom{n}{k} (\ln 3)^k 3^x (x^2+x)^{(n-k)}y(n)=∑k=0n(kn)(ln3)k3x(x2+x)(n−k)(6) y=x2cos(2x)y = x^2 \cos(2x)y=x2cos(2x)y′=2xcos(2x)−2x2sin(2x)y' = 2x \cos(2x) - 2x^2 \sin(2x)y′=2xcos(2x)−2x2sin(2x)y′′=2cos(2x)−4xsin(2x)−4xsin(2x)−4x2cos(2x)=(2−4x2)cos(2x)−8xsin(2x)y'' = 2 \cos(2x) - 4x \sin(2x) - 4x \sin(2x) - 4x^2 \cos(2x) = (2 - 4x^2) \cos(2x) - 8x \sin(2x)y′′=2cos(2x)−4xsin(2x)−4xsin(2x)−4x2cos(2x)=(2−4x2)cos(2x)−8xsin(2x)Leibnizの公式を用いるy(n)=∑k=0n(nk)(x2)(k)(cos(2x))(n−k)y^{(n)} = \sum_{k=0}^n \binom{n}{k} (x^2)^{(k)} (\cos(2x))^{(n-k)}y(n)=∑k=0n(kn)(x2)(k)(cos(2x))(n−k)y(n)=x2(cos(2x))(n)+nx2(cos(2x))(n−1)+n(n−1)2(2)(cos(2x))(n−2)y^{(n)} = x^2 (cos(2x))^{(n)} + nx^2 (\cos(2x))^{(n-1)} + \frac{n(n-1)}{2}(2) (\cos(2x))^{(n-2)}y(n)=x2(cos(2x))(n)+nx2(cos(2x))(n−1)+2n(n−1)(2)(cos(2x))(n−2)(7) y=1x2−x−2=1(x−2)(x+1)=Ax−2+Bx+1y = \frac{1}{x^2 - x - 2} = \frac{1}{(x-2)(x+1)} = \frac{A}{x-2} + \frac{B}{x+1}y=x2−x−21=(x−2)(x+1)1=x−2A+x+1B1=A(x+1)+B(x−2)1 = A(x+1) + B(x-2)1=A(x+1)+B(x−2).x=−1⇒1=−3B⇒B=−13x = -1 \Rightarrow 1 = -3B \Rightarrow B = -\frac{1}{3}x=−1⇒1=−3B⇒B=−31x=2⇒1=3A⇒A=13x = 2 \Rightarrow 1 = 3A \Rightarrow A = \frac{1}{3}x=2⇒1=3A⇒A=31y=13(1x−2−1x+1)=13((x−2)−1−(x+1)−1)y = \frac{1}{3} \left( \frac{1}{x-2} - \frac{1}{x+1} \right) = \frac{1}{3} \left( (x-2)^{-1} - (x+1)^{-1} \right)y=31(x−21−x+11)=31((x−2)−1−(x+1)−1)y(n)=13((−1)nn!(x−2)−n−1−(−1)nn!(x+1)−n−1)y^{(n)} = \frac{1}{3} \left( (-1)^n n! (x-2)^{-n-1} - (-1)^n n! (x+1)^{-n-1} \right)y(n)=31((−1)nn!(x−2)−n−1−(−1)nn!(x+1)−n−1)y(n)=(−1)nn!3(1(x−2)n+1−1(x+1)n+1)y^{(n)} = \frac{(-1)^n n!}{3} \left( \frac{1}{(x-2)^{n+1}} - \frac{1}{(x+1)^{n+1}} \right)y(n)=3(−1)nn!((x−2)n+11−(x+1)n+11)(8) y=ex1−xy = \frac{e^x}{1-x}y=1−xexy′=ex(1−x)−ex(−1)(1−x)2=ex−xex+ex(1−x)2=ex(2−x)(1−x)2y' = \frac{e^x (1-x) - e^x (-1)}{(1-x)^2} = \frac{e^x - xe^x + e^x}{(1-x)^2} = \frac{e^x (2-x)}{(1-x)^2}y′=(1−x)2ex(1−x)−ex(−1)=(1−x)2ex−xex+ex=(1−x)2ex(2−x)3. 最終的な答え(1) y(n)=(−1)nn!(1+x)n+1y^{(n)} = \frac{(-1)^n n!}{(1+x)^{n+1}}y(n)=(1+x)n+1(−1)nn!(2) y(n)=−(n−1)!(1−x)ny^{(n)} = -\frac{(n-1)!}{(1-x)^n}y(n)=−(1−x)n(n−1)!(3) y(n)=a(a−1)(a−2)...(a−n+1)(1+x)a−ny^{(n)} = a(a-1)(a-2)...(a-n+1)(1+x)^{a-n}y(n)=a(a−1)(a−2)...(a−n+1)(1+x)a−n(4) y(n)=[2nx2+4n2n−1x+n(n−1)2n−2]e2xy^{(n)} = [2^n x^2 + 4n2^{n-1} x + n(n-1)2^{n-2}] e^{2x}y(n)=[2nx2+4n2n−1x+n(n−1)2n−2]e2x(5) y(n)=∑k=0n(nk)(ln3)k3x(x2+x)(n−k)y^{(n)} = \sum_{k=0}^n \binom{n}{k} (\ln 3)^k 3^x (x^2+x)^{(n-k)}y(n)=∑k=0n(kn)(ln3)k3x(x2+x)(n−k)(6) y(n)=∑k=0n(nk)(x2)(k)(cos(2x))(n−k)y^{(n)} = \sum_{k=0}^n \binom{n}{k} (x^2)^{(k)} (\cos(2x))^{(n-k)}y(n)=∑k=0n(kn)(x2)(k)(cos(2x))(n−k)(7) y(n)=(−1)nn!3(1(x−2)n+1−1(x+1)n+1)y^{(n)} = \frac{(-1)^n n!}{3} \left( \frac{1}{(x-2)^{n+1}} - \frac{1}{(x+1)^{n+1}} \right)y(n)=3(−1)nn!((x−2)n+11−(x+1)n+11)(8) y(n)=dndxn(ex1−x)y^{(n)} = \frac{d^n}{dx^n} \left( \frac{e^x}{1-x} \right)y(n)=dxndn(1−xex)Leibnizの公式を使う必要があるが、明確な式はない。