$\sum_{k=1}^{n} (6k^2 - 1)$ を求めよ。代数学シグマ数列和の公式多項式2025/7/291. 問題の内容∑k=1n(6k2−1)\sum_{k=1}^{n} (6k^2 - 1)∑k=1n(6k2−1) を求めよ。2. 解き方の手順∑k=1n(6k2−1)\sum_{k=1}^{n} (6k^2 - 1)∑k=1n(6k2−1) を計算します。まず、シグマの性質を使って式を分割します。∑k=1n(6k2−1)=∑k=1n6k2−∑k=1n1\sum_{k=1}^{n} (6k^2 - 1) = \sum_{k=1}^{n} 6k^2 - \sum_{k=1}^{n} 1∑k=1n(6k2−1)=∑k=1n6k2−∑k=1n1次に、定数倍の性質を使って、最初のシグマの定数を前に出します。∑k=1n6k2−∑k=1n1=6∑k=1nk2−∑k=1n1\sum_{k=1}^{n} 6k^2 - \sum_{k=1}^{n} 1 = 6\sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} 1∑k=1n6k2−∑k=1n1=6∑k=1nk2−∑k=1n1∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1) および ∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=n を使います。6∑k=1nk2−∑k=1n1=6⋅n(n+1)(2n+1)6−n6\sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} 1 = 6 \cdot \frac{n(n+1)(2n+1)}{6} - n6∑k=1nk2−∑k=1n1=6⋅6n(n+1)(2n+1)−n666 を約分します。6⋅n(n+1)(2n+1)6−n=n(n+1)(2n+1)−n6 \cdot \frac{n(n+1)(2n+1)}{6} - n = n(n+1)(2n+1) - n6⋅6n(n+1)(2n+1)−n=n(n+1)(2n+1)−nnnn をくくり出します。n(n+1)(2n+1)−n=n((n+1)(2n+1)−1)n(n+1)(2n+1) - n = n((n+1)(2n+1) - 1)n(n+1)(2n+1)−n=n((n+1)(2n+1)−1)(n+1)(2n+1)(n+1)(2n+1)(n+1)(2n+1) を展開します。n((n+1)(2n+1)−1)=n(2n2+3n+1−1)n((n+1)(2n+1) - 1) = n(2n^2 + 3n + 1 - 1)n((n+1)(2n+1)−1)=n(2n2+3n+1−1)111 を消します。n(2n2+3n+1−1)=n(2n2+3n)n(2n^2 + 3n + 1 - 1) = n(2n^2 + 3n)n(2n2+3n+1−1)=n(2n2+3n)最後に、nnn を分配します。n(2n2+3n)=2n3+3n2n(2n^2 + 3n) = 2n^3 + 3n^2n(2n2+3n)=2n3+3n23. 最終的な答え2n3+3n22n^3 + 3n^22n3+3n2